$\mathcal{C}\textbf{U}\mathcal{R}$ Decomposition

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

1

Introduction

- Let A be a $m\times n$ matrix of real numbers of rank r
- $A_{m \times n} = U_{m \times r} \Sigma_{r \times r} V_{r \times n}^T$, where
- U is a orthonormal $m \times r$ matrix V is a orthonormal $n \times r$ matrix Σ is an $r \times r$ diagonal matrix and its (i, i)-th entry is σ_i for i = 1, ..., r
- Note that $\sigma_1 \ge \sigma_2 \ge \ldots \sigma_r > 0$ and $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of $A^T A$
- The set of orthonormal vectors v_1, \ldots, v_r and u_1, \ldots, u_r are eigenvectors of $A^T A$ and $A A^T$, respectively. The vectors v's and u's satisfy the equation $Av_i = \sigma_i u_i$, for $i = 1, \ldots, r$
- Alternatively, we can express $A = \sum_{i=1}^{r} \sigma_i u_i v_i^T$

Interpreting U, Σ , and V

Utility Matrix M as SVD $M = U\Sigma V^T$

	Γ1	1	1	0	07								
	3	3	3	0	0								
	4	4	4	0	0								
M =	5	5	5	0	0	=							
	0	2	0	4	4								
	0	0	0	5	5								
	Lo	1	0	2	2								
۲.13	_	.02	.0	1]									
.41	_	.07	.0	3									
.55	-	1	.0	4	[12.	5	0	0	.56	.59	.56	.09	.09
.68	_	.11	.0	5	0		9.5	0	12	.02	12	.69	.69
.15		59	(65	0		0	1.35	.40	8	.40	.09	.09
.07		73	.6	7	-				-				-
L.07		29	:	32									

Issues:

- 1. Utility matrix M is sparse, but U and V are dense
- 2. Total size $= r(n+m) + r^2$
- 3. Interpretation of entries in U and V

A Possiblity

Can we express $M \approx \mathcal{C}U\mathcal{R}$, where

- 1. $\mathcal C$ consists of some columns of M
- 2. \mathcal{R} consists of some rows of M
- 3. U is not that big
- 4. Square of Frobenius Norm = $\sum_{ij} (M_{ij} (CUR)_{ij})^2$ is small

$\mathcal{C}U\mathcal{R}$ Method

Let
$$M$$
 be $m\times n$ and let $\Delta = \sum\limits_{ij} M[i,j]^2 = ||M||_F^2$

- 1. For each column j, compute $p_j = \frac{1}{\Delta} \sum_{i=1}^{m} M[i, j]^2$
- 2. Pick α columns of M based on their probabilities (with replacement). Let C be the multi-set of picked columns.
- 3. For each element of selected columns $j \in C$, scale its value to $\frac{M[*,j]}{\sqrt{\alpha p_j}}$
- 4. Repeat above steps for all the rows and let ${\cal R}$ be the multi-set of α picked and scaled rows.
- 5. Let W be the $\alpha \times \alpha$ matrix whose entries are from M that are common to C and R
- 6. Construct SVD of $W = X \Sigma Y^T$
- 7. Construct Σ^+ , where each non-zero element x of Σ is replaced by 1/x
- 8. Compute $U = Y(\Sigma^+)^2 X^T$
- 9. Report CUR as approximation of M

An Example

$$M = \begin{bmatrix} 4 & 1 & 1 & 0 \\ 4 & 0 & 0 & 1 \\ 0 & 0 & 5 & 5 \\ 0 & 1 & 5 & 5 \\ 0 & 1 & 5 & 3 \end{bmatrix} \qquad \qquad \sum_{ij} M_{ij}{}^2 = 171$$

Column	C_1	C_2	C_3	C_4	
$\sum_{i} M_{ij}$	32	3	76	60	
Row	R_1	R_2	R_3	R_4	R_5
$\sum_{j} M_{ij}$	18	17	50	51	35

For Rank 1 Approximation: Select C_3 and R_4 and scale them to obtain:

$$\begin{aligned} C_3 &= \frac{1}{\sqrt{76/171}} \begin{bmatrix} 1 & 0 & 5 & 5 & 5 \end{bmatrix}^T = \begin{bmatrix} 1.5 & 0 & 7.6 & 7.6 \end{bmatrix}^T \\ R_4 &= \frac{1}{\sqrt{51/171}} \begin{bmatrix} 0 & 1 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1.85 & 9.3 & 9.3 \end{bmatrix} \end{aligned}$$

W = 5 and SVD W = [1][5][1] and U = [1][1/25][1]

Thus, we have M = CUR as

	[1.5]					Го	.11	.59	.59
	0				-	0	0	0	0
$M \approx$	7.6	$\frac{1}{25}$ 0	1.85	9.3	9.3 =	0	.56	2.8	2.82.8
	7.6	[20][,	0	.56	2.8	2.82.8
	[7.6]					[0	.56	2.8	2.82.8

Try Rank 2 approximation: Possibly select Columns C_3 , C_4 and Rows R_3 , R_4 and compute scaled columns, rows, matrices W, U and CUR

Remarks

- 1. In case a row/column is picked $\beta > 1$ times, we take only one of its copy in \mathcal{R}/\mathcal{C} and scale the corresponding entries by a factor of $\sqrt{\beta}$
- 2. \implies W may not be square, but we know how to compute SVDs for rectangular matrices.
- 3. Columns in ${\mathcal C}$ and rows in ${\mathcal R}$ are from ${\it M}$
- 4. In CUR decomposition, U (of dimension at most $\alpha \times \alpha$) may be dense.
- 5. Total Space = $\alpha(n+m) + \alpha^2$ (likely to be much less due to the sparsity of M)

Quality Estimate

Let M_k be the best rank *k*-approximation of M. Choose $\alpha = \frac{k \log k}{\epsilon^2}$. The resulting \mathcal{CUR} decomposition satisfies the following: Frobenius Norm of M and \mathcal{CUR} is at most $(2 + \epsilon)$ times the Frobenius Norm of M and M_k , i.e. $||M - \mathcal{CUR}||_F \leq (2 + \epsilon)||M - M_k||_F$

Remarks:

- 1. There are recent works that show that $\alpha = k/\epsilon$ suffices
- 2. Approximation is by a factor of $1 + \epsilon$
- 3. Running time is faster than that of computing SVDs
- 4. Randomized Linear Algebra a new field in theoretical computer science.