C**U**R **Decomposition**

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

[Introduction](#page-1-0)

- Let A be a $m \times n$ matrix of real numbers of rank r
- $-A_{m\times n}=U_{m\times r}\Sigma_{r\times r}V_{r\times n}^T,$ where
- U is a orthonormal $m \times r$ matrix V is a orthonormal $n \times r$ matrix Σ is an $r \times r$ diagonal matrix and its (i, i) -th entry is σ_i for $i = 1, \ldots, r$
- Note that $\sigma_1 \geq \sigma_2 \geq \ldots \sigma_r > 0$ and $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of $A^T A$
- The set of orthonormal vectors v_1, \ldots, v_r and u_1, \ldots, u_r are eigenvectors of A^TA and AA^T , respectively. The vectors v 's and u 's satisfy the equation $Av_i = \sigma_i u_i$, for $i = 1, \ldots, r$
- Alternatively, we can express $A=\Sigma_{i=1}^r \sigma_i u_i v_i^T$

Interpreting U, Σ, **and** V

Utility Matrix M as SVD $M = U\Sigma V^T$

Issues:

- 1. Utility matrix M is sparse, but U and V are dense
- 2. Total size $= r(n+m) + r^2$
- 3. Interpretation of entries in U and V

A Possiblity

Can we express $M \approx \mathcal{C} \mathcal{U} \mathcal{R}$, where

- 1. $\mathcal C$ consists of some columns of M
- 2. R consists of some rows of M
- 3. U is not that big
- 4. Square of Frobenius Norm $= \sum\limits_{ij} (M_{ij} ({\cal C} U {\cal R})_{ij})^2$ is small

C**U**R **Method**

Let *M* be
$$
m \times n
$$
 and let $\Delta = \sum_{ij} M[i, j]^2 = ||M||_F^2$

- 1. For each column j, compute $p_j = \frac{1}{\Delta} \sum_{i=1}^{m} M[i, j]^2$
- 2. Pick α columns of M based on their probabilities (with replacement). Let C be the multi-set of picked columns.
- 3. For each element of selected columns $j \in \mathcal{C}$, scale its value to $\frac{M[*,j]}{\sqrt{\alpha p_j}}$
- 4. Repeat above steps for all the rows and let R be the multi-set of α picked and scaled rows.
- 5. Let W be the $\alpha \times \alpha$ matrix whose entries are from M that are common to C and R
- 6. Construct SVD of $W = X\Sigma Y^T$
- 7. Construct Σ^+ , where each non-zero element x of Σ is replaced by $1/x$
- 8. Compute $U = Y(\Sigma^+)^2 X^T$
- 9. Report CUR as approximation of M

An Example

$$
M = \begin{bmatrix} 4 & 1 & 1 & 0 \\ 4 & 0 & 0 & 1 \\ 0 & 0 & 5 & 5 \\ 0 & 1 & 5 & 5 \\ 0 & 1 & 5 & 3 \end{bmatrix} \qquad \qquad \begin{aligned} &Y_{ij}^2 = 171 \\ &Y_{ij}^2 = 171 \end{aligned}
$$

For Rank 1 Approximation: Select C_3 and R_4 and scale them to obtain:

$$
C_3 = \frac{1}{\sqrt{76}/171} \begin{bmatrix} 1 & 0 & 5 & 5 & 5 \end{bmatrix}^T = \begin{bmatrix} 1.5 & 0 & 7.6 & 7.6 & 7.6 \end{bmatrix}^T
$$

$$
R_4 = \frac{1}{\sqrt{51}/171} \begin{bmatrix} 0 & 1 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1.85 & 9.3 & 9.3 \end{bmatrix}
$$

 $W = 5$ and SVD $W = [1][5][1]$ and $U = [1][1/25][1]$

Thus, we have $M = \mathcal{C} U \mathcal{R}$ as

$$
M \approx \begin{bmatrix} 1.5 \\ 0 \\ 7.6 \\ 7.6 \\ 7.6 \\ \end{bmatrix} \begin{bmatrix} \frac{1}{25} \end{bmatrix} \begin{bmatrix} 0 & 1.85 & 9.3 & 9.3 \end{bmatrix} = \begin{bmatrix} 0 & .11 & .59 & .59 \\ 0 & 0 & 0 & 0 \\ 0 & .56 & 2.8 & 2.82.8 \\ 0 & .56 & 2.8 & 2.82.8 \\ 0 & .56 & 2.8 & 2.82.8 \end{bmatrix}
$$

Try Rank 2 approximation: Possibly select Columns C_3 , C_4 and Rows R_3 , R_4 and compute scaled columns, rows, matrices W , U and CUR

Remarks

- 1. In case a row/column is picked $\beta > 1$ times, we take only one of its copy in substantial process β is also single sin
- 2. \implies W may not be square, but we know how to compute SVDs for rectangular matrices.
- 3. Columns in C and rows in R are from M
- 4. In CUR decomposition, U (of dimension at most $\alpha \times \alpha$) may be dense.
- 5. Total Space $= \alpha(n+m) + \alpha^2$ (likely to be much less due to the sparsity of M)

Quality Estimate

Let M_k be the best rank k-approximation of M. Choose $\alpha = \frac{k \log k}{\epsilon^2}$. The resulting CUR decomposition satisfies the following: Frobenius Norm of M and CUR is at most $(2 + \epsilon)$ times the Frobenius Norm of M and M_k , i.e. $||M - CUR||_F \leq (2 + \epsilon) ||M - M_k||_F$

Remarks:

- 1. There are recent works that show that $\alpha = k/\epsilon$ suffices
- 2. Approximation is by a factor of $1 + \epsilon$
- 3. Running time is faster than that of computing SVDs
- 4. Randomized Linear Algebra a new field in theoretical computer science.