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Introduction



Singular Value Decomposition

- Let A be a m× n matrix of real numbers of rank r

- Am×n = Um×rΣr×rV
T
r×n, where

U is a orthonormal m× r matrix
V is a orthonormal n× r matrix
Σ is an r × r diagonal matrix and its (i, i)-th entry is σi for i = 1, . . . , r

- Note that σ1 ≥ σ2 ≥ . . . σr > 0 and σi =
√
λi where λi are the eigenvalues

of ATA

- The set of orthonormal vectors v1, . . . , vr and u1, . . . , ur are eigenvectors of
ATA and AAT , respectively. The vectors v’s and u’s satisfy the equation
Avi = σiui, for i = 1, . . . , r

- Alternatively, we can express A = Σri=1σiuiv
T
i
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Interpreting U,Σ, and V

Utility Matrix M as SVD M = UΣV T

M =



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


=



.13 −.02 .01

.41 −.07 .03

.55 −.1 .04

.68 −.11 .05

.15 .59 −.65

.07 .73 .67

.07 .29 −.32



12.5 0 0

0 9.5 0

0 0 1.35


 .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

.40 −.8 .40 .09 .09



Issues:

1. Utility matrix M is sparse, but U and V are dense

2. Total size = r(n+m) + r2

3. Interpretation of entries in U and V
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A Possiblity

Can we express M ≈ CUR, where

1. C consists of some columns of M

2. R consists of some rows of M

3. U is not that big

4. Square of Frobenius Norm =
∑
ij

(Mij − (CUR)ij)
2 is small
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CUR Method

Let M be m× n and let ∆ =
∑
ij

M [i, j]2 = ||M ||2F

1. For each column j, compute pj = 1
∆

m∑
i=1

M [i, j]2

2. Pick α columns of M based on their probabilities (with replacement). Let C be the
multi-set of picked columns.

3. For each element of selected columns j ∈ C, scale its value to M [∗,j]√
αpj

4. Repeat above steps for all the rows and let R be the multi-set of α picked and
scaled rows.

5. Let W be the α×α matrix whose entries are from M that are common to C andR

6. Construct SVD of W = XΣY T

7. Construct Σ+, where each non-zero element x of Σ is replaced by 1/x

8. Compute U = Y (Σ+)2XT

9. Report CUR as approximation of M
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An Example

M =


4 1 1 0

4 0 0 1

0 0 5 5

0 1 5 5

0 1 5 3


∑
ij

Mij
2 = 171

Column C1 C2 C3 C4∑
i

Mij 32 3 76 60

Row R1 R2 R3 R4 R5∑
j

Mij 18 17 50 51 35

For Rank 1 Approximation: Select C3 and R4 and scale them to obtain:

C3 = 1√
76/171

[
1 0 5 5 5

]T
=

[
1.5 0 7.6 7.6 7.6

]T
R4 = 1√

51/171

[
0 1 5 5

]
=

[
0 1.85 9.3 9.3

]

W = 5 and SVD W = [1][5][1] and U = [1][1/25][1]

Thus, we have M = CUR as

M ≈


1.5

0

7.6

7.6

7.6


[

1
25

] [
0 1.85 9.3 9.3

]
=


0 .11 .59 .59

0 0 0 0

0 .56 2.8 2.82.8

0 .56 2.8 2.82.8

0 .56 2.8 2.82.8



Try Rank 2 approximation: Possibly select Columns C3, C4 and Rows R3, R4 and compute scaled columns, rows, matrices W , U
and CUR
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Remarks

1. In case a row/column is picked β > 1 times, we take only one of its copy
in R/C and scale the corresponding entries by a factor of

√
β

2. =⇒ W may not be square, but we know how to compute SVDs for
rectangular matrices.

3. Columns in C and rows in R are from M

4. In CUR decomposition, U (of dimension at most α× α) may be dense.

5. Total Space = α(n+m) + α2 (likely to be much less due to the sparsity
of M )
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Performance Guarantee

Quality Estimate
Let Mk be the best rank k-approximation of M .
Choose α = k log k

ε2
.

The resulting CUR decomposition satisfies the following:
Frobenius Norm of M and CUR is at most (2 + ε) times the Frobenius
Norm of M and Mk, i.e. ||M − CUR||F ≤ (2 + ε)||M −Mk||F

Remarks:

1. There are recent works that show that α = k/ε suffices

2. Approximation is by a factor of 1 + ε

3. Running time is faster than that of computing SVDs

4. Randomized Linear Algebra - a new field in theoretical computer
science.
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