Stream Statistics Over Sliding Window

Anil Maheshwari

School of Computer Science Carleton University Canada

Outline

[Introduction](#page-2-0)

[Algorithm](#page-6-0)

[Sum Problem](#page-18-0)

[Trends](#page-22-0)

[References](#page-26-0)

[Introduction](#page-2-0)

Main Problem

The input is an endless stream of binary bits. At any time, among the last N bits received, we are interested in queries that seek an approximate count of the number of 1's in the stream among the last k bits, where $k \leq N$.

Result: A data structure of size $O(\frac{1}{\epsilon}\log^2 N)$ that can approximate the count of the number of 1s within a factor of $1 \pm \epsilon$

Reference: Maintaining stream statistics over sliding windows by Datar, Gionis, Indyk, and Motwani, SIAM Jl. Computing 2002

Variants

- 1. A stream of positive numbers. The query consists of a value $k \in \{1, \ldots, N\}$, and we want to know the (approximate) sum of the last k numbers in the stream. (Uses sublinear space.)
- 2. A stream consisting of numbers from the set $\{-1, 0, +1\}$. We want to maintain the sum of last N numbers of the stream. (Requires $\Omega(N)$ bits of storage to approximate the sum that is within a constant factor of the exact sum.)
- 3. What are the most popular movies in the last week?
- 4. What is trending in the last week?

 $5. \ldots$

Main Problem

Report an approximate count of the number of 1's in the stream of binary bits among the last k bits, where $k \leq N$.

What about Exact Count?

H/W: Show that to report exact count, we need to store $\Omega(n)$ bits.

[Algorithm](#page-6-0)

Algorithm uses two structures:

Time Stamps: To track the most recent N bits.

Buckets: With the following features:

- $O(\log N)$ buckets maintain the 1's among the latest N bits
- Number of 1's in a bucket is a power of 2
- Each 1-bit is assigned to exactly one bucket (0-bit may or may not be assigned to any bucket)
- At most two buckets of a given $size$ (size $=$ #1s)
- Each bucket stores time stamp of its most recent bit
- Most recent bit of any bucket is 1-bit

Update

An Illustration

On receiving a new bit in the data stream:

0**-bit**: Increment the time stamp of each of the buckets by 1, and if any of the buckets time stamp exceeds N , we discard that bucket.

1**-bit**: Following updates are done:

- 1. Create a bucket B_0 consisting of the newest 1-bit with a time stamp of 1.
- 2. Scan the list of buckets in order of increasing size.

Case 1: At most two buckets of size B_0 .

Increment time stamp of each bucket (and possibly discard buckets whose time stamps exceed N)

Case 2: Three buckets of type B_0 .

- Merge the two oldest buckets of type B_0 to form a bucket of type B_1 .
- Update time stamps appropriately of each bucket as in Case 1.
- Now, if we have three buckets of type B_1 , merge the oldest two B_1 buckets, to form a bucket of type B_2 , and repeat.

Illustration

We have:

- $O(\log N)$ buckets as the size of window is N
- Bucket B_i stores 2^i 1-bits
- For each bucket we store its time stamp and its size
- Time stamps requires $O(\log N)$ bits
- Storing i with bucket B_i is sufficient for its size
- As $0 \le i \le \log N$, i can represented using $O(\log \log N)$ bits
- Total space required

 $O(\log N(\log N + \log \log N)) = O(\log^2 N)$ bits

On receiving a 0**-bit:**

- We update time stamps of each of the $O(\log N)$ buckets
- Requires $O(\log N)$ time

On receiving a 1**-bit:**

- We update the time stamps of each bucket
- Potentially, perform cascaded merging of buckets
- Time (merge & cascade) \approx # of buckets
- Requires $O(\log N)$ time

Total Time (per update): $O(\log n)$

Query Problem

For any query value $k \in \{1, ..., N\}$, report an approximate count of the number of 1's among the latest k bits of the stream.

- 1. Initialize $C := 0$
- 2. Traverse buckets from right to left. For each bucket of type B_i that is encountered in the traversal:
	- 2.1 B_i is completely contained in the window:

$$
C := C + 2^i
$$

2.2 B_i is completely outside the window:

 C remains unchanged

2.3 Partially overlaps the window:

$$
C := C + \frac{2^i}{2}
$$

3. Report C as an approximate count

2-factor approximation

Let C^* be the true count of number of 1s in the query window of size k . Then, $\frac{1}{2} \leq \frac{C}{C^*} \leq 2$.

Proof: Let B_i be the last bucket type that partially overlaps the query window.

- Anywhere from $2^0 = 1$ to 2^l 1's may contribute to the count C^* , whereas for

C we take the contribution of this bucket to be $\frac{2^l}{2} = 2^{l-1}$.

- Thus we may incur an error.

- Note that all the previous buckets contribution is correctly accounted in the sum C .

- Let that contribution be α , where $\alpha \geq \sum_{i=0}^{l-1} 2^i = 2^l 1$.
- Thus, $C = \alpha + 2^{l-1}$, $C^* \ge \alpha + 1$, and $\alpha \ge 2^l 1$.
- We have $\frac{C}{C^*} \leq \frac{\alpha+2^{l-1}}{\alpha+1} \leq 1+\frac{1}{2}.$
- Similarly, $C^* \le \alpha + 2^l$, and thus $\frac{C}{C^*} \ge \frac{\alpha + 2^{l-1}}{\alpha + 2^l} \ge 1 \frac{1}{2}$.

 \Box

Let $r > 2$ be an integer parameter.

Maintain $r - 1$ or r copies of B_i for each $i \ge 1$ Note: B_0 and the largest bucket may have fewer than $r - 1$ copies.

At any time, if we exceed r copies of any type of buckets, we take the oldest two buckets and merge them to form a new bucket of the next size.

Answer queries as before.

Improvements (contd.)

Claim

For this setting, we have $1 - \frac{1}{r-1} \leq \frac{C}{C^*} \leq 1 + \frac{1}{r-1}$. If $r=1+\frac{1}{\epsilon}$, we obtain a data structure of size $O(\frac{1}{\epsilon}\log^2 N)$ that approximates the count of the number of 1s within a factor of $1 \pm \epsilon$.

Assume that B_l is the last bucket that overlaps the window.

Observe that the true Count $C^* \geq 1 + (r-1)\sum_{i=1}^{l-1} 2^i$. Error between C and C^* is at most $\leq 2^{l-1}-1$. Therefore, $\frac{2^{l-1}-1}{l-1} \leq \frac{1}{r-1}$. $1+(r-1)\sum_{i=1}^{l-1} 2^i$ Hence, $1 - \frac{1}{r-1} \leq \frac{C}{C^*} \leq 1 + \frac{1}{r-1}$.

[Sum Problem](#page-18-0)

The Sum Problem

A stream of positive numbers. The query consists of a value $k \in \{1, \ldots, N\}$, and we want to know the (approximate) sum of the last k numbers in the stream.

5 7 2 3 9 4 1 6 11 2 4 3

If the next number in the stream is x , insert x 1's in the stream

5 7 2 3 9 4 1 6 11 2 4 3

Assuming d-bit numbers. For each bit position i, maintain a stream. Let C_i be the value of approximate number of $1's$ in the stream i. Report approximate sum as $\sum^{d-1} 2^i C_i$ $i=0$

[Trends](#page-22-0)

Among the last 10^{12} movie tickets sold, list all *popular* movies?

Let $c := 10^{-3}$. Maintain (decaying) scores for movies whose threshold is at least $\tau \in (0,1)$. For each new sale of ticket (say for Movie M):

- 1. For each movie whose score is being maintained, its new score is reduced by a factor of $(1 - c)$
- 2. If we have the score of M , add 1 to that score. Otherwise, create a new score for M and initialize it to 1
- 3. Remove any score that falls below τ

Questions

- 1. What is sum of all scores at any point of time? Show that the sum total of all the scores is $\frac{1}{c}$
- 2. How many scores are maintained at any given time? Assume $\tau = \frac{1}{2}$. Show that at most $\frac{2}{c}$ movies are maintained, each with a score $\geq \tau$.
- 3. What are changes if $\tau = \frac{1}{3}$.

Variants

- 1. Min/Max
- 2. Stream with $+$ numbers
- 3. Lower Bounds: Results are more-or-less optimal up to constant factors
- 4. . . .

[References](#page-26-0)

Main References:

- 1. Maintaining stream statistics over sliding windows, by Datar, Gionis, Indyk, and Motwani, SIAM Jl. Computing 2002.
- 2. Chapter in MMDS book (mmds.org)
- 3. Chapter on Data Streams in My Notes on Topics in Algorithm Design