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Matrices



Matrices

1. A Rectangular Array

2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse;
Determinant

3. Row Operations; Linear Equations; Gaussian Elimination

4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular;
Orthogonal; Orthonormal

5. Transformations - Eigenvalues and Eigenvectors

6. Rank; Column and Row Space; Null Space

7. Applications: Page Rank, Dimensionality Reduction, Recommender
Systems, . . .
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Matrix Vector Product

Matrix-vector product: Ax = b

[
2 1

3 4

] [
4

−2

]
=

[
2× 4 + 1×−2
3× 4 + 4×−2

]
=

[
6

4

]
[
6

4

]
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Matrix Vector Product

Ax = b as linear combination of columns:[
2 1

3 4

] [
4

−2

]
= 4

[
2

3

]
−2

[
1

4

]
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Eigenvalues and Eigenvectors

Given an n× n matrix A.
A non-zero vector v is an eigenvector of A, if Av = λv for some scalar λ.
λ is the eigenvalue corresponding to vector v.

Example

Let A =

[
2 1

3 4

]

Observe that

[
2 1

3 4

][
1

3

]
= 5

[
1

3

]
and

[
2 1

3 4

][
1

−1

]
= 1

[
1

−1

]

Thus, λ1 = 5 and λ2 = 1 are the eigenvalues of A.
Corresponding eigenvectors are v1 = [1, 3] and v2 = [1,−1], as Av1 = λ1v1

and Av2 = λ2v2.
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Computation of Eigenvalues and Eigenvectors

Given an n× n matrix A, we want to find eigenvalues λ’s and the
corresponding eigenvectors that satisfy Av = λv.

We can express Av = λv as (A− λI)v = 0, where I is n× n identity matrix.

Suppose B = A− λI.

If B is invertible, than the only solution of Bv = 0 is v = 0, as B−1Bv = B−10

or v = 0.

Thus B isn’t invertible and hence the determinant of B is 0.

We solve the equation det(A− λI) = 0 to obtain eigenvalues λ.

Once we know an eigenvalue λi, we can solve Avi = λivi to obtain the
corresponding eigenvector vi.
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Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of A =

[
2 1

3 4

]

det(A− λI) =

[
2− λ 1

3 4− λ

]
= 0

(2− λ)(4− λ)− 3 = 0

λ2 − 6λ+ 5 = 0, and the two roots are λ1 = 5 and λ2 = 1.

To find the eigenvector v1 = [a, b], we can solve

[
2 1

3 4

][
a

b

]
= 5

[
a

b

]
.

This gives: 2a+ b = 5a and b = 3a. Thus v1 = [1, 3] is an eigenvector
corresponding to λ1 = 5.

Similarly, for v2, we have

[
2 1

3 4

][
a

b

]
= 1

[
a

b

]
.

This gives 2a+ b = a, or a = −b. Thus, v2 = [1,−1] is an eigenvector
corresponding to λ2 = 1.
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Eigenvalues of Ak

Let Avi = λivi

Consider: A2vi = A(Avi) = A(λivi) = λi(Avi) = λi(λivi) = λ2
i vi

=⇒ A2vi = λ2
i vi

Eigenvalues of Ak

For an integer k > 0, Ak has the same eigenvectors as A, but the
eigenvalues are λk.
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Markov Matrices

1/3

2/3

P Q

R

1/2

1/2

1/3 2/3

P Q R
P 0 1/3 1/3
Q 1/2 0 2/3
R 1/2 2/3 0
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Markov Chain

- X0, X1, . . . be a sequence of r. v. that evolve over time.
- At time 0, we have X0, followed by X1 at time 1, . . .
- Assume each Xi takes value from the set {1, . . . , n} that represents the set
of states.
- This sequence is a Markov chain if the probability that Xm+1 equals a
particular state αm+1 ∈ {1, . . . , n} only depends on what is the state of Xm
and is completely independent of the states of X0, . . . , Xm−1.

Memoryless property:
P [Xm+1 = αm+1|Xm = αm, Xm−1 = αm−1, . . . , X0 = α0] = P [Xm+1 = αm+1|Xm =

αm], where α0, . . . , αm+1, · · · ∈ {1, . . . , n}
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Memoryless Property

1/3

2/3

P Q

R

1/2

1/2

1/3 2/3

P Q R
P 0 1/3 1/3
Q 1/2 0 2/3
R 1/2 2/3 0
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Markov Matrices

What is a Markov Matrix?

A square matrix A is a Markovian Matrix if

1. A[i, j] = probability of transition from the state j to state i.

2. Sum of the values within any column is 1 (= probability of leaving from a
state to any of the possible states).
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State Transitions

Start in an initial state and in each successive step make a transition from the
current state to the next state respecting the probabilities.

1. What is the probability of reaching the state j after taking n steps
starting from the state i?

2. Given an initial probability vector representing the probabilities of starting
in various states, what is the steady state? After traversing the chain for
a large number of steps, what is the probability of landing in various
states?

1/3

2/3

P Q

R

1/2

1/2

1/3 2/3
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Types of States

Recurrent State: A state i is recurrent if starting from state i, with probability
1, we can return to the state i after making finitely many transitions.

Transient State: A state i is transient, i.e. there is a non-zero probability of
not returning to the state i.

1 2

3

4 5

6

Figure 1: Recurrent States={1,2,3}. Transient States={4,5,6}
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Irreducible Markov Chains

A Markov chain is irreducible if it is possible to go between any pair of
states in a finite number of steps. Otherwise it is called reducible.

Observation: If the graph is strongly connected then it is irreducible.

1 2

3

4 5

6
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Aperiodic Markov Chains

Period of a state
Period of a state i is the greatest common divisor (GCD) of all possible
number of steps it takes the chain to return to the state i starting from i.

Note: If there is no way to return to i starting from i, then its period is
undefined.

Aperiodic Markov Chain
A Markov chain is aperiodic if the periods of each of its states is 1.
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Eigenvalues of Markov Matrices

A =

 0 1/3 1/3

1/2 0 2/3

1/2 2/3 0


Eigenvalues of A are the roots of det(A− λI) = 0

Eigenvalue Eigenvector
λ1 = 1 v1 = (2/3, 1, 1)

λ2 = −2/3 v2 = (0,−1, 1)
λ3 = −1/3 v3 = (−2, 1, 1)

Observe: Largest (principal) eigenvalue is 1 and the corresponding
(principal) eigenvector is (2/3, 1, 1). Note that Avi = λivi, for i = 1, . . . , 3.
Any vector v can be converted to a unit vector: v

||v|| .

For example, for v1 = ( 2
3
, 1, 1), the unit vector v1

||v1||
is 3√

22
( 2
3
, 1, 1).

The vector 1
2/3+1+1

(2/3, 1, 1) = (2/8, 3/8, 3/8) has the property that all its
components add to 1 and it points in the same direction as v1.
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Principal Eigenvalue of Markov Matrices

Principal Eigenvalue
The largest eigenvalue of a Markovian matrix is 1

See Notes on Algorithm Design for the proof.

Idea: Let B = AT
−→
1 is an Eigenvector of B, as B

−→
1 = 1

−→
1

=⇒ 1 is an Eigenvalue of A.

Using contradiction, show that B cannot have any eigenvalue > 1
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Eigenvalues of Powers of A

A =

 0 1/3 1/3

1/2 0 2/3

1/2 2/3 0


Note that all the entries in A2 are > 0 and all the entries within a column still
adds to 1.

A2 =

1/3 2/9 2/9

1/3 11/17 1/6

1/3 1/6 11/17


Ak is Markovian
If the entries within each column of A adds to 1, then entries within each
column of Ak, for any integer k > 0, will add to 1.
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Random Surfer Model

Initial: Surfer with probability vector u0 = (1/3, 1/3, 1/3)

u1 = Au0 =

 0 1/3 1/3

1/2 0 2/3

1/2 2/3 0


1/31/3

1/3

 =

4/187/18

7/18



u2 = Au1 =

 0 1/3 1/3

1/2 0 2/3

1/2 2/3 0


4/187/18

7/18

 =

 7/27

10/27

10/27


Likewise, we compute u3 = Au2 = [20/81, 61/162, 61/162],
u4 = Au3 = [61/243, 91/243, 91/243],
u5 = Au4 = [182/729, 547/1458, 547/1458],
. . .

u∞ = [0.25, 0.375, 0.375] = [2/8, 3/8, 3/8]
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Linear Combination of Eigenvectors

u0 =

 1/3

1/3

1/3

 = c1

 2/3

1

1

 + c2

 0

−1
1

 + c3

 −21
1



u1 = Au0

= c1Av1 + c2Av2 + c3Av3

= c1λ1v1 + c2λ2v2 + c3λ3v3 (as Avi = λivi)

Thus,

u1 = A

 1/3

1/3

1/3

 = c1λ1

 2/3

1

1

 + c2λ2

 0

−1
1

 + c3λ3

 −21
1


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Linear Combination of Eigenvectors(contd.)

u2 = Au1 = A
2
u0 = c1λ

2
1

 2/3

1

1

 + c2λ
2
2

 0

−1
1

 + c3λ
2
3

 −21
1



In general, for integer k > 0, uk = Aku0 = c1λ
k
1v1 + c2λ

k
2v2 + c3λ

k
3v3, i.e.

uk = A
k

 1/3

1/3

1/3

 = c1λ
k
1

 2/3

1

1

 + c2λ
k
2

 0

−1
1

 + c3λ
k
3

 −21
1


and that equals

uk = c11
k

 2/3

1

1

 + c2(−
2

3
)
k

 0

−1
1

 + c3(−
1

3
)
k

 −21
1


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Linear Combination of Eigenvectors(contd.)

For large values of k, ( 2
3
)k → 0 and ( 1

3
)k → 0. The above expression

reduces to

uk ≈ c1

 2/3

1

1

 =
3

8

 2/3

1

1

 =

 2/8

3/8

3/8


Note that the value of c1 is derived by solving the equation for
u0 = c1v1 + c2v2 + c3v3 for u0 = [1/3, 1/3, 1/3]
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Linear Combination of Eigenvectors(contd.)

Suppose u0 = [1/4, 1/4, 1/2]

u1 = Au0 = [1/4, 11/24, 7/24]

u2 = Au1 = [1/4, 23/72, 31/72]

u3 = Au2 = [1/4, 89/216, 73/216]

. . .

u∞ = [2/8, 3/8, 3/8]
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Convergence?

Entries in Ak

Assume that all the entries of a Markov matrix A, or of some finite power of
A, i.e. Ak for some integer k > 0, are strictly > 0. A corresponds to an
irreducible aperiodic Markov chain.

Irreducible: for any pair of states i and j, it is always possible to go from
state i to state j in finite number of steps with positive probability.

Period of a state i: GCD of all possible number of steps it takes the chain to
return to the state i starting from i.

Aperiodic: M is aperiodic if the GCD is 1 for the period of each of the states
in M .

25



Properties of Markov Matrix A, when Ak > 0

1 2 3

A =

0 0 1

1 1/2 0

0 1/2 0

 A2 =

0 0 1

1 1/2 0

0 1/2 0


0 0 1

1 1/2 0

0 1/2 0

 =

 0 1/2 0

1/2 1/4 1

1/2 1/4 0



A3 =

1/2 1/4 0

1/4 5/8 1/2

1/4 1/8 1/2

 A4 =

1/4 1/8 1/2

5/8 9/16 1/4

1/8 5/16 1/4


A4 > 0 and for k ≥ 4, Ak > 0.

A corresponds to irreducible aperiodic Markov chain.

26



Perron-Frobenius Theorem

Assume A corresponds to an irreducible aperiodic Markov chain M .

Perron-Frobenius Theorem from linear algebra states that

1. Largest eigenvalue 1 of A is unique

2. All other eigenvalues of A have magnitude strictly smaller than 1

3. All the coordinates of the eigenvector v1 corresponding to the eigenvalue
1 are > 0

4. The steady state corresponds to the eigenvector v1
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Pagerank Algorithm

Problem: How to rank the web-pages?

Ranking assigns a real number to each web-page.
The higher the number, the more important the page is.
Needs to be automated, as the web is extremely large.

We will study the Page Rank algorithm.

Source: Page, Brin, Motwani, Winograd, The PageRank citation ranking:
Bringing order to the Web published as a technical report in1998).
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Web as a Graph

- G = (V,E) is a positively weighted directed graph
- Each web-page is a vertex of G
- If a web-page u points (links) to the web-page v, there is a directed edge
from u to v
- The weight of an edge uv is 1

out-degree(u)

Assume V = {v1, . . . , vn}
n× n adjacency matrix M of G is:

M(i, j) =

{
1

out-degree(vj)
, if vjvi ∈ E

0 otherwise

Assumption: A surfer will make a random transition from a web-page to what
it points to.
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An Example

v1 v2

v3v4

v5

M =


0 0 1/2 1/3 0

1/2 0 0 0 0

1/2 1/2 0 0 0

0 1/2 1/2 1/3 0

0 0 0 1/3 0


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Remarks

1. Assumes users will visit useful pages rather than useless pages.

2. Random Surfer Model - Assume initially a web-surfer is equally likely to
be at any node of G, given by the vector v0 = (1/|V |, . . . , 1/|V |).

3. In each step it makes a transition: v1 =Mv, v2 =Mv1 =M2v0, . . .,
vk =Mvk−1 =Mkv0.

4. Need to worry about sink nodes/dead ends; circling within same set of
nodes; and whether we will reach a steady state?
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Abstract representation of a web graph

Strongly

Connected

Component

In Component Out Component

• In-Component: Nodes that can reach strongly-connected component

• Out-component: Nodes that can be reached from strongly-connected
component

• Possibly multiple copies of above configuration

32



Avoiding Sink Nodes

Idea: Make sink nodes point to all other nodes.

M =


0 0 1/2 1/3 0

1/2 0 0 0 0

1/2 1/2 0 0 0

0 1/2 1/2 1/3 0

0 0 0 1/3 0

→


0 0 1/2 1/3 1/5

1/2 0 0 0 1/5

1/2 1/2 0 0 1/5

0 1/2 1/2 1/3 1/5

0 0 0 1/3 1/5

 = Q

v1 v2

v3v4

v5
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Teleportation - Key Idea

Define K = αQ+ 1−α
n
E

Teleportation Parameter: 0 < α < 1, e.g α = 0.9

E is a n× n matrix of all 1s.

Observations on K:

1. Each entry of K is > 0

2. The entries within each column sums to 1

3. K satisfies the requirements of irreducible aperiodic Markov chain

4. Its largest eigenvalue is 1

5. By Perron-Frobenius Theorem, the steady state (=page ranks)
correspond to the principal eigenvector
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Conclusions

Computational Issues: K = αQ+ 1−α
n
E

Q is sparse and E is special.

Favors: Teleport to specific pages. Teleport to topic-sensitive pages (Sports,
Business, Science, News, ...) based on the profile of the user.

Caution: Real story is not that simple
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