Quick Review of Probability

Anil Maheshwari

School of Computer Science Carleton University Canada

[Sample Space & Events](#page-2-0)

[Random Variable](#page-5-0)

[Geometric Distribution](#page-10-0)

[Coupon Collector Problem](#page-14-0)

[Sample Space & Events](#page-2-0)

Basic Definition

Definitions

Sample Space $S =$ Set of Outcomes.

Events \mathcal{E} = Subsets of S.

Probability is a function from subsets $A \subseteq S$ to positive real numbers between $[0, 1]$ such that:

1. $Pr(S) = 1$

2. For all $A, B \subseteq S$ if $A \cap B = \emptyset$, $Pr(A \cup B) = Pr(A) + Pr(B)$.

- 3. If $A \subset B \subset S$, $Pr(A) \leq Pr(B)$.
- 4. Probability of complement of A, $Pr(\bar{A}) = 1 Pr(A)$.

Examples:

1. Flipping a fair coin:

$$
\begin{aligned} S &= \{H,T\}; \\ \mathcal{E} &= \{\emptyset, \{H\}, \{T\}, S = \{H,T\}\} \end{aligned}
$$

2. Flipping fair coin twice:

$$
S = \{HH, HT, TH, TT\};
$$
\n
$$
\mathcal{E} = \{\emptyset, \{HH\}, \{HT\}, \{TH\}, \{TT\},
$$
\n
$$
\{HH, TT\}, \{HH, TH\}, \{HH, HT\},
$$
\n
$$
\{HT, TH\}, \{HT, TT\}, \{TH, TT\},
$$
\n
$$
\{HH, HT, TH\}, \{HH, HT, TT\}, \{HH, TH, TT\},
$$
\n
$$
\{HT, TH, TT\}, S = \{HH, HT, TH, TT\} \}
$$

3. Rolling fair die twice:

$$
S = \{(i, j) : 1 \le i, j \le 6\};
$$

$$
\mathcal{E} = \{\emptyset, \{1, 1\}, \{1, 2\}, \dots, S\}
$$

[Random Variable](#page-5-0)

Definition

A random variable X is a function from sample space S to Real numbers, $X : S \rightarrow \mathbb{R}$. Expected value of a discrete random variable X is given by $E[X] = \sum_{s \in S} X(s) * Pr(X = X(s)).$

Note: Its a misnomer to say X is a random variable, it's a function.

Example: Flip a fair coin and define the random variable $X: {H, T} \rightarrow \Re$ as

> $X =$ (1 Outcome is Heads 0 Outcome is Tails

 $E[X] = \sum_{s \in \{H,T\}} X(s) * Pr(X = X(s)) = 1 * \frac{1}{2} + 0 * \frac{1}{2} = \frac{1}{2}$

Linearity of Expectation

Definition

Consider two random variables X, Y such that $X, Y : S \to \mathbb{R}$, then $E[X + Y] = E[X] + E[Y].$ In general, consider n random variables X_1, X_2, \ldots, X_n such that

 $X_i: S \to \Re$, then $E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i].$

Example: Flip a fair coin n times and define n random variable X_1, \ldots, X_n as

$$
X_i = \begin{cases} 1 & \text{Outcome is Heads} \\ 0 & \text{Outcome is Tails} \end{cases}
$$

 $E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n] = \frac{1}{2} + \cdots + \frac{1}{2} = \frac{n}{2}$ $=$ Expected # of Heads in n tosses.

$$
E[X+Y] = \sum_{\omega \in S} (X+Y)[\omega] \cdot P(\omega)
$$

=
$$
\sum_{\omega \in S} (X[\omega] + Y[\omega]) \cdot P(\omega)
$$

=
$$
\sum_{\omega \in S} (X[\omega] \cdot P(\omega) + Y[\omega] \cdot P(\omega))
$$

=
$$
\sum_{\omega \in S} X[\omega] \cdot P(\omega) + \sum_{\omega \in S} Y[\omega] \cdot P(\omega)
$$

=
$$
E[X] + E[Y]
$$

This generalizes to the sum of n random variables: $E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n].$

More detailed proof

$$
E[X + Y] = \sum_{x} \sum_{y} (x + y)P(X = x, Y = y)
$$

= $\sum_{x} \sum_{y} xP(X = x, Y = y) + \sum_{x} \sum_{y} yP(X = x, Y = y)$
= $\sum_{x} \sum_{y} xP(X = x, Y = y) + \sum_{y} \sum_{x} yP(X = x, Y = y)$
= $\sum_{x} x \sum_{y} P(X = x, Y = y) + \sum_{y} y \sum_{x} P(X = x, Y = y)$
= $\sum_{x} xP(X = x) + \sum_{y} yP(Y = y)$
= $E[X] + E[Y]$

[Geometric Distribution](#page-10-0)

Definition

Perform a sequence of independent trials till the first success. Each trial succeeds with probability p (and fails with probability $1 - p$). A Geometric Random Variable X with parameter p is defined to be equal to $n \in N$ if the first $n-1$ trials are failures and the n-th trial is success. Probability distribution function of X is $Pr(X = n) = (1 - p)^{n-1}p.$

Let Z to be the $r.v.$ that equals the # failures before the first success, i.e. $Z = X - 1$.

Problem: Evaluate $E[X]$ and $E[Z]$.

To show: $E[Z] = \frac{1-p}{p}$ and $E[X] = 1 + \frac{1-p}{p} = \frac{1}{p}$.

Computation of $E[Z]$

 $Z = \text{\#}$ failures before the first success. Set $q=1-p$.

•
$$
Pr(Z = k) = q^k p
$$

\n• $\frac{1}{1-q} = \sum_{k=0}^{\infty} q^k$ (for $0 < q < 1$)
\n• $\frac{1}{(1-q)^2} = \sum_{k=0}^{\infty} kq^{k-1}$

$$
E[Z] = \sum_{k=0}^{\infty} k Pr(Z = k)
$$

$$
= \sum_{k=0}^{\infty} k q^k p
$$

$$
= pq \sum_{k=0}^{\infty} k q^{k-1}
$$

$$
= \frac{pq}{(1-q)^2} = \frac{1-p}{p}
$$

Examples

Examples:

1. Flipping a fair coin till we get a Head:

$$
p = \frac{1}{2}
$$
 and $E[X] = \frac{1}{p} = 2$

2. Roll a die till we see a 6:

$$
p = \frac{1}{6}
$$
 and $E[X] = \frac{1}{p} = 6$

3. Keep buying LottoMax tickets till we win (assuming we have 1 in 33294800 chance).

$$
p = \frac{1}{33294800}
$$
 and $E[X] = \frac{1}{p} = 33,294,800.$

[Coupon Collector Problem](#page-14-0)

Problem Definition

There are a total of n different types of coupons (Pokemon cards). A cereal manufacturer has ensured that each cereal box contains a coupon. Probability that a box contains any particular type of coupon is $\frac{1}{n}$. What is the expected number of boxes we need to buy to collect all the n coupons?

Define r.v. N_1, N_2, \ldots, N_n , where $N_i = \#$ of boxes bought till the *i*-th coupon is collected.

Each N_i is a geometric random variable.

Coupon's Collector Problem Contd.

Let
$$
N = \sum_{j=1}^{n} N_i
$$
; Note $N_1 = 1$
\n
$$
E[N_j] = \frac{1}{\text{Pr of success in finding the } j^{th} \text{ coupon}} = \frac{1}{\frac{n-j+1}{n}}
$$
\n
$$
E[N] = \sum_{j=1}^{n} \frac{n}{n-j+1} = nH_n, \text{ where } H_n = n\text{-th Harmonic Number.}
$$
\n
$$
H_n = \sum_{i=1}^{n} \frac{1}{i} \text{ and } \ln n \le H_n \le \ln n + 1.
$$

Thus, $E[N] = nH_n \approx n \ln n$,

Is $E[N] = nH_n = n \ln n$ **a good estimate?**

What is the probability that $E[N]$ exceeds $2nH_n$? Applying Markov's Inequality: $Pr(X > s) \leq \frac{E[X]}{s}$ $\frac{[X]}{s} Pr(N > 2nH_n) < \frac{E[N]}{2nH_n}$ $\frac{E[N]}{2nH_n} = \frac{nH_n}{2nH_n} = \frac{1}{2}$

Can we have a better bound?

Next: We show $Pr(N > n \ln n + cn) < \frac{1}{e^{c}}$

Pr. of missing a coupon after $n \ln n + cn$ boxes have been bought $= (1 - \frac{1}{n})^{n \ln n + nc} \le e^{-\frac{1}{n}(n \ln n + cn)} = \frac{1}{ne^c}.$

Pr. of missing at least one coupon $\leq n(\frac{1}{ne^c}) = \frac{1}{e^c}$.

- 1. Introduction to Probability by Blitzstein and Hwang, CRC Press 2015.
- 2. Courses Notes of COMP 2804 by Michiel Smid.
- 3. Probability and Computing by Mitzenmacher and Upfal, Cambridge Univ. Press 2005.
- 4. My Notes on Algorithm Design.