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Sample Space & Events



Basic Definition

Definitions
Sample Space S = Set of Outcomes.
Events E = Subsets of S.
Probability is a function from subsets A ⊆ S to positive real numbers
between [0, 1] such that:

1. Pr(S) = 1

2. For all A,B ⊆ S if A ∩B = ∅, Pr(A ∪B) = Pr(A) + Pr(B).

3. If A ⊂ B ⊆ S, Pr(A) ≤ Pr(B).

4. Probability of complement of A, Pr(Ā) = 1− Pr(A).
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Basic Definition

Examples:

1. Flipping a fair coin:
S = {H,T};
E = {∅, {H}, {T}, S = {H,T}}

2. Flipping fair coin twice:
S = {HH,HT, TH, TT};
E = {∅, {HH}, {HT}, {TH}, {TT},
{HH,TT}, {HH,TH}, {HH,HT},
{HT, TH}, {HT, TT}, {TH, TT},
{HH,HT, TH}, {HH,HT, TT}, {HH,TH, TT},
{HT, TH, TT}, S = {HH,HT, TH, TT}}

3. Rolling fair die twice:
S = {(i, j) : 1 ≤ i, j ≤ 6};
E = {∅, {1, 1}, {1, 2}, . . . , S}
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Random Variable



Expectation

Definition
A random variable X is a function from sample space S to Real
numbers, X : S → <.
Expected value of a discrete random variable X is given by
E[X] =

∑
s∈S X(s) ∗ Pr(X = X(s)).

Note: Its a misnomer to say X is a random variable, it’s a function.

Example: Flip a fair coin and define the random variable
X : {H,T} → < as

X =

{
1 Outcome is Heads

0 Outcome is Tails

E[X] =
∑

s∈{H,T}X(s) ∗ Pr(X = X(s)) = 1 ∗ 1
2 + 0 ∗ 1

2 = 1
2
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Linearity of Expectation

Definition
Consider two random variables X,Y such that X,Y : S → <, then
E[X + Y ] = E[X] + E[Y ].
In general, consider n random variables X1, X2, . . . , Xn such that
Xi : S → <, then E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi].

Example: Flip a fair coin n times and define n random variable
X1, . . . , Xn as

Xi =

{
1 Outcome is Heads

0 Outcome is Tails

E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn] = 1
2 + · · ·+ 1

2 = n
2

= Expected # of Heads in n tosses.
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Proof of Linearity of Expectation

E[X + Y ] =
∑
ω∈S

(X + Y )[ω] · P (ω)

=
∑
ω∈S

(X[ω] + Y [ω]) · P (ω)

=
∑
ω∈S

(X[ω] · P (ω) + Y [ω] · P (ω))

=
∑
ω∈S

X[ω] · P (ω) +
∑
ω∈S

Y [ω] · P (ω)

= E[X] + E[Y ]

This generalizes to the sum of n random variables:
E[X1 + · · ·+ Xn] = E[X1] + · · ·+ E[Xn].
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More detailed proof

E[X + Y ] =
∑
x

∑
y

(x + y)P (X = x, Y = y)

=
∑
x

∑
y

xP (X = x, Y = y) +
∑
x

∑
y

yP (X = x, Y = y)

=
∑
x

∑
y

xP (X = x, Y = y) +
∑
y

∑
x

yP (X = x, Y = y)

=
∑
x

x
∑
y

P (X = x, Y = y) +
∑
y

y
∑
x

P (X = x, Y = y)

=
∑
x

xP (X = x) +
∑
y

yP (Y = y)

= E[X] + E[Y ]
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Geometric Distribution



Geometric Distribuition

Definition
Perform a sequence of independent trials till the first success. Each
trial succeeds with probability p (and fails with probability 1− p).
A Geometric Random Variable X with parameter p is defined to be
equal to n ∈ N if the first n− 1 trials are failures and the n-th trial is
success. Probability distribution function of X is
Pr(X = n) = (1− p)n−1p.

Let Z to be the r.v. that equals the # failures before the first success,
i.e. Z = X − 1.

Problem: Evaluate E[X] and E[Z].

To show: E[Z] = 1−p
p and E[X] = 1 + 1−p

p = 1
p .
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Computation of E[Z]

Z = # failures before the first success.
Set q = 1− p.

• Pr(Z = k) = qkp

• 1
1−q =

∑∞
k=0 q

k (for 0 < q < 1)
• 1

(1−q)2 =
∑∞

k=0 kq
k−1

E[Z] =

∞∑
k=0

kPr(Z = k)

=

∞∑
k=0

kqkp

= pq

∞∑
k=0

kqk−1

=
pq

(1− q)2
=

1− p

p
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Examples

Examples:

1. Flipping a fair coin till we get a Head:
p = 1

2 and E[X] = 1
p = 2

2. Roll a die till we see a 6:
p = 1

6 and E[X] = 1
p = 6

3. Keep buying LottoMax tickets till we win (assuming we have 1 in
33294800 chance).
p = 1

33294800 and E[X] = 1
p = 33, 294, 800.
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Coupon Collector Problem



Coupon’s Collector Problem

Problem Definition
There are a total of n different types of coupons (Pokemon cards). A
cereal manufacturer has ensured that each cereal box contains a
coupon. Probability that a box contains any particular type of
coupon is 1

n . What is the expected number of boxes we need to buy
to collect all the n coupons?

Define r.v. N1, N2, . . . , Nn, where Ni =# of boxes bought till the i-th
coupon is collected.
Each Ni is a geometric random variable.
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Coupon’s Collector Problem Contd.

Let N =
∑n

j=1 Ni; Note N1 = 1

E[Nj ] = 1

Pr of success in finding the jth coupon
= 1

n−j+1
n

E[N ] =
∑n

j=1
n

n−j+1 = nHn, where Hn = n-th Harmonic Number.

Hn =
∑n

i=1
1
i and lnn ≤ Hn ≤ lnn + 1.

Thus, E[N ] = nHn ≈ n lnn,
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Is E[N ] = nHn = n lnn a good estimate?

What is the probability that E[N ] exceeds 2nHn? Applying Markov’s

Inequality: Pr(X > s) ≤ E[X]
s Pr(N > 2nHn) < E[N ]

2nHn
= nHn

2nHn
= 1

2

Can we have a better bound?

Next: We show Pr(N > n lnn + cn) < 1
ec

Pr. of missing a coupon after n lnn + cn boxes have been bought
= (1− 1

n )n lnn+nc ≤ e−
1
n (n lnn+cn) = 1

nec .

Pr. of missing at least one coupon ≤ n( 1
nec ) = 1

ec .
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