Introduction to Matrices

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada Introduction

Matrices

- 1. A Rectangular Array
- 2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse; Determinant
- 3. Row Operations; Linear Equations; Gaussian Elimination
- 4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular; Orthogonal; Orthonormal
- 5. Transformations Eigenvalues and Eigenvectors
- 6. Rank; Column and Row Space; Null Space
- Applications: Page Rank, Dimensionality Reduction, Recommender Systems, . . .

Utility Matrix M

A Matrix ${\cal M}$ where rows represent users, columns items, and entries in ${\cal M}$ represents the ratings.

$$M = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1.13 & -.02 & .01 \\ .41 & -.07 & .03 \\ .55 & -.1 & .04 \\ .68 & -.11 & .05 \\ .15 & .59 & -.65 \\ .07 & .73 & .67 \\ .07 & .29 & -.32 \end{bmatrix} \begin{bmatrix} 12.5 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.35 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ -.12 & .02 & -.12 & .69 & .69 \\ .40 & -.8 & .40 & .09 & .09 \end{bmatrix}$$

Questions: How to guess missing entries? How to guess ratings for a new user? . . .

Matrix Vector Product

Matrix-vector product: Ax = b

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \times 4 + 1 \times -2 \\ 3 \times 4 + 4 \times -2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

$$\begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

2

Matrix Vector Product

Ax = b as linear combination of columns:

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Matrix-Matrix Product

• Matrix-matrix product A = BC:

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 8 \\ 6 & 16 \end{bmatrix}$$

• A = BC as sum of rank 1 matrices:

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 & 4 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 8 \\ 6 & 12 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 8 \\ 6 & 16 \end{bmatrix}$$

6

Row Reduced Echelon Form

$$\text{Let } A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 4 & 8 \\ 10 & 16 & 24 \end{bmatrix}$$

1st Pivot: Replace r_2 by $r_2 - r_1$, and r_3 by $r_3 - 5r_1$:

$$\begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 8 \\ 0 & 6 & 24 \end{bmatrix}$$

2nd Pivot: Replace r_3 by $r_3 - 3r_2$:

$$\begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

RREF contd.

Divide the first row by 2, the second row by 2:

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

Replace r_1 by $r_1 - r_2$:

$$R = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 4 & 8 \\ 10 & 16 & 24 \end{bmatrix} \xrightarrow{\mathsf{RREF}} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix} = R$$

Definitions:

- Rank = Number of non-zero pivots = 2
- Basis vectors of row space = rows corresponding to non-zero pivots in R $v_1=\left[egin{array}{c}1\\0\\-4\end{array}\right]$ and $v_2=\left[egin{array}{c}0\\1\\4\end{array}\right]$
- Basis vectors of column space = Columns of A corresponding to non-zero pivots of R.

$$u_1 = \left[egin{array}{c} 2 \\ 2 \\ 10 \end{array}
ight]$$
 and $u_2 = \left[egin{array}{c} 2 \\ 4 \\ 16 \end{array}
ight]$

• A as sum of the product of rank 1 matrices

$$A = u_1 v_1^T + u_2 v_2^T = \begin{bmatrix} 2 \\ 10 \end{bmatrix} \begin{bmatrix} 1 & 0 & -4 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 16 \end{bmatrix} \begin{bmatrix} 0 & 1 & 4 \end{bmatrix}$$

9

Null Space

Null space of A = All vectors x such that Ax = 0.

This includes the 0 vector $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Is there a vector $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, such that

$$Ax = x_1 \begin{bmatrix} 2\\2\\10 \end{bmatrix} + x_2 \begin{bmatrix} 2\\4\\16 \end{bmatrix} + x_3 \begin{bmatrix} 0\\8\\24 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

x=(1,-1,1/4), or any of its scalar multiples, satisfies Ax=0

Dimension of Null Space of A= Number of columns (A) - rank(A)=3-2=1

Spaces for A

Let A be $m \times n$ matrix with real entries.

Let R be RREF of A consisting of $r \leq \min\{m, n\}$ non-zero pivots.

- 1. rank(A) = r
- 2. Column space is a subspace of \mathbb{R}^m of dimension r, and its basis vectors are the columns of A corresponding to the non-zero pivots in \mathbb{R} .
- 3. Row space is a subspace of \mathbb{R}^n of dimension r, and its basis vectors are the rows of \mathbb{R} corresponding to the non-zero pivots.
- 4. The null-space of A consists of all the vectors $x \in \mathbb{R}^n$ satisfying Ax = 0. They form a subspace of dimension n r.

Eigenvalues

Eigenvalues and Eigenvectors

Given an $n \times n$ matrix A.

A non-zero vector v is an eigenvector of A, if $Av=\lambda v$ for some scalar λ . λ is the eigenvalue corresponding to vector v.

Example

Let
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

Observe that

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Thus, $\lambda_1 = 5$ and $\lambda_2 = 1$ are the eigenvalues of A.

Corresponding eigenvectors are $v_1 = [1, 3]$ and $v_2 = [1, -1]$, as $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$.

Computation of Eigenvalues and Eigenvectors

Given an $n \times n$ matrix A, we want to find eigenvalues λ 's and the corresponding eigenvectors that satisfy $Av = \lambda v$.

We can express $Av = \lambda v$ as $(A - \lambda I)v = 0$, where I is $n \times n$ identity matrix.

Suppose $B = A - \lambda I$.

If B is invertible, than the only solution of Bv = 0 is v = 0.

Reason: $v = B^{-1}Bv = B^{-1}(Bv) = B^{-1}0 = 0.$

 \implies B isn't invertible and hence the determinant of B is 0.

We solve the equation $det(A - \lambda I) = 0$ to obtain eigenvalues λ .

Once we know an eigenvalue λ_i , we can solve $Av_i=\lambda_i v_i$ to obtain the corresponding eigenvector v_i .

Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

$$det(A - \lambda I) = \begin{bmatrix} 2 - \lambda & 1\\ 3 & 4 - \lambda \end{bmatrix} = 0$$

$$(2-\lambda)(4-\lambda)-3=0$$

 $\lambda^2 - 6\lambda + 5 = 0$, and the two roots are $\lambda_1 = 5$ and $\lambda_2 = 1$.

To find the eigenvector $v_1=[a,b]$, we can solve $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 5 \begin{bmatrix} a \\ b \end{bmatrix}$.

This gives: 2a + b = 5a and b = 3a. Thus $v_1 = [1, 3]$ is an eigenvector corresponding to $\lambda_1 = 5$.

Similarly, for v_2 , we have $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 1 \begin{bmatrix} a \\ b \end{bmatrix}$.

This gives 2a + b = a, or a = -b. Thus, $v_2 = [1, -1]$ is an eigenvector corresponding to $\lambda_2 = 1$.

Matrices with distinct eigenvalues

Propertry

Let A be an $n \times n$ real matrix with n distinct eigenvalues.

The corresponding eigenvectors are linearly independent.

Proof: Proof by contradiction. Let $\lambda_1, \ldots, \lambda_n$ be the distinct eigenvalues and v_1, \ldots, v_n the corresponding eigenvectors, that are linearly dependent.

Assume v_1, \ldots, v_{n-1} are L.I. (otherwise work with a smaller set).

Dependence
$$\implies \alpha_1 v_1 + \ldots + \alpha_{n-1} v_{n-1} + \alpha_n v_n = 0$$
, where $\alpha_n \neq 0$.

$$\implies v_n = \frac{-\alpha_1}{\alpha_n} v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} v_{n-1}$$

Multiply by A:
$$Av_n = \lambda_n v_n = \frac{-\alpha_1}{\alpha_n} \lambda_1 v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} \lambda_{n-1} v_{n-1}$$

Multiply by
$$\lambda_n$$
: $\lambda_n v_n = \frac{-\alpha_1}{\alpha_n} \lambda_n v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} \lambda_n v_{n-1}$

Subtract last two equations:

$$0 = \frac{-\alpha_1}{\alpha_n} (\lambda_n - \lambda_1) v_1 + \ldots + \frac{-\alpha_{n-1}}{\alpha_n} (\lambda_n - \lambda_{n-1}) v_{n-1}$$

Since, $\lambda_n - \lambda_i \neq 0$, \Longrightarrow the vectors v_1, \dots, v_{n-1} are linearly dependent.

A contradiction.

Matrices with distinct eigenvalues

Let A be an $n \times n$ real matrix with n distinct eigenvalues. Let $\lambda_1, \ldots, \lambda_n$ be the distinct eigenvalues and let x_1, \ldots, x_n be the corresponding eigenvectors, respectively. Let each $x_i = [x_{i1}, x_{i2}, \ldots, x_{in}]$.

Define an eigenvector matrix
$$X = \begin{bmatrix} x_{11} & x_{21} & \dots & x_{n1} \\ \vdots & \vdots & \vdots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{nn} \end{bmatrix}$$

Define a diagonal
$$n \times n$$
 matrix $\Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \lambda_n \end{bmatrix}$

Consider the matrix product AX,

$$AX = A \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \dots & \lambda_n x_n \end{bmatrix} = X\Lambda$$

Matrices with distinct eigenvalues

Since eigenvectors are linearly independent, we know that ${\cal X}^{-1}$ exists.

Multiply by X^{-1} on both the sides from left in $AX = X\Lambda$ and we obtain

$$X^{-1}AX = X^{-1}X\Lambda = \Lambda \tag{1}$$

and when we multiply on the right we obtain

$$AXX^{-1} = A = X\Lambda X^{-1} \tag{2}$$

An Application of Diagonalization $A = X\Lambda X^{-1}$

Consider $A^2=(X\Lambda X^{-1})(X\Lambda X^{-1})=X\Lambda(X^{-1}X)\Lambda X^{-1}=X\Lambda^2 X^{-1}$ $\implies A^2$ has the same set of eigenvectors as A, but eigenvalues are squared.

Similarly, $A^k = X\Lambda^k X^{-1}$.

Eigenvectors of A^k are same as that of A and its eigenvalues are raised to the power of k.

Eigenvalues of A^k

Let
$$Av_i = \lambda_i v_i$$

Consider:
$$A^2v_i = A(Av_i) = A(\lambda_i v_i) = \lambda_i (Av_i) = \lambda_i (\lambda_i v_i) = \lambda_i^2 v_i$$

 $\implies A^2v_i = \lambda_i^2 v_i$

Eigenvalues of A^k

For an integer $k>0,\,A^k$ has the same eigenvectors as A, but the eigenvalues are $\lambda^k.$

Symmetric Matrices

Example

Consider symmetric matrix $S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Its eigenvalues are $\lambda_1=4$ and $\lambda_2=2$ and the corresponding eigenvectors are $q_1=(1/\sqrt{2},1/\sqrt{2})$ and $q_2=(1/\sqrt{2},-1/\sqrt{2})$, respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Eigenvalues of Symmetric Matrices

All the eigenvalues of a real symmetric matrix S are real. Moreover, all components of the eigenvectors of a real symmetric matrix S are real.

Symmetric Matrices (contd.)

Property

Any pair of eigenvectors of a real symmetric matrix ${\cal S}$ corresponding to two different eigenvalues are orthogonal.

Proof: Let q_1 and q_2 be eigenvectors corresponding to $\lambda_1 \neq \lambda_2$, respectively. We have $Sq_1 = \lambda_1q_1$ and $Sq_2 = \lambda_2q_2$.

Now $(Sq_1)^T=q_1^T\hat{S^T}=q_1^T\hat{S}=\lambda_1q_1^T$, as S is symmetric,

Multiply by q_2 on the right and we obtain $\lambda_1 q_1^T q_2 = q_1^T S q_2 = q_1^T \lambda_2 q_2$.

Since $\lambda_1 \neq \lambda_2$ and $\lambda_1 q_1^T q_2 = q_1^T \lambda_2 q_2$, this implies that $q_1^T q_2 = 0$ and thus the eigenvectors q_1 and q_2 are orthogonal.

Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues

Let S be a $n \times n$ symmetric matrix with n distinct eigenvalues and let q_1,\ldots,q_n be the corresponding orthonormal eigenvectors. Let Q be the $n \times n$ matrix consiting of q_1,\ldots,q_n as its columns. Then $S=Q\Lambda Q^{-1}=Q\Lambda Q^T$. Furthermore, $S=\lambda_1q_1q_1^T+\lambda_2q_2q_2^T+\cdots+\lambda_nq_nq_n^T$

$$S = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} = 4 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} + 2 \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

Summary for Symmetric Matrices

Theorem

For a real symmetric $n \times n$ matrix S, we have

- 1. All eigenvalues of S are real.
- 2. S can be expressed as $S = Q\Lambda Q^T$, where Q consists of orthonormal basis of R^n formed by n eigenvectors of S, and Λ is a diagonal matrix consisting of n eigenvalues of S.
- 3. S can be expressed as the sum of the product of rank 1 matrices:

$$S = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T$$

Note: Since Q is a basis of R^n , any vector x can be expressed as a linear combination $x = \alpha_1 q_1 + \ldots + \alpha_n q_n$

Consider
$$x \cdot q_i = (\alpha_1 q_1 + \ldots + \alpha_n q_n) \cdot q_i = \alpha_i$$

Inverse of Symmetric Matrices

Claim

$$S = Q\Lambda Q^T$$
 and $S^{-1} = \frac{1}{\lambda_1}q_1q_1^T + \ldots + \frac{1}{\lambda_n}q_nq_n^T$

Proof Sketch: $S = Q\Lambda Q^T = \lambda_1 q_1 q_1^T + \ldots + \lambda_n q_n q_n^T$

$$SS^{-1}=(\lambda_1q_1q_1^T+\ldots+\lambda_nq_nq_n^T)(\frac{1}{\lambda_1}q_1q_1^T+\ldots+\frac{1}{\lambda_n}q_nq_n^T)=I$$
 as q_1,\ldots,q_n are orthonormal.

23

Positive Definite Matrices

Positive Definite Matrices

A symmetric matrix S is positive definite if all its eigenvalues > 0. It is positive semi-definite if all the eigenvalues are > 0.

An Alternate Characterization

Let S be a $n \times n$ real symmetric matrix. For all non-zero vectors $x \in \mathbb{R}^n$, if $x^T S x > 0$ holds, then all the eigenvalues of S are > 0.

Proof: Let λ_i be an eigenvalue of S.

Let the corresponding unit eigenvector is q_i .

Note that $q_i^T q_i = 1$.

Since S is symmetric, we know that λ_i is real.

Now we have, $\lambda_i = \lambda_i q_i^T q_i = q_i^T \lambda_i q_i = q_i^T S q_i$.

But $q_i^T S q_i > 0$, hence $\lambda_i > 0$.

Eigenvalue Identities

Trace

Let $\lambda_1, \dots, \lambda_n$ be eigenvalues of $n \times n$ real matrix A.

$$trace(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$$

Determinant

$$\det(A) = \prod_{i=1}^n \lambda_i$$