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Introduction



Matrices

1. A Rectangular Array

2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse;
Determinant

3. Row Operations; Linear Equations; Gaussian Elimination

4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular;
Orthogonal; Orthonormal

5. Transformations - Eigenvalues and Eigenvectors

6. Rank; Column and Row Space; Null Space

7. Applications: Page Rank, Dimensionality Reduction, Recommender
Systems, . . .
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Utility Matrix M

A Matrix M where rows represent users, columns items, and entries in M
represents the ratings.

M =



1 1 1 0 0

3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5

0 1 0 2 2


=



.13 −.02 .01

.41 −.07 .03

.55 −.1 .04

.68 −.11 .05

.15 .59 −.65

.07 .73 .67

.07 .29 −.32


12.5 0 0

0 9.5 0

0 0 1.35

 .56 .59 .56 .09 .09

−.12 .02 −.12 .69 .69

.40 −.8 .40 .09 .09



Questions: How to guess missing entries? How to guess ratings for a new
user? . . .

3



Matrix Vector Product

Matrix-vector product: Ax = b

[
2 1

3 4

] [
4

−2

]
=

[
2× 4 + 1×−2

3× 4 + 4×−2

]
=

[
6

4

]
[

6

4

]
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Matrix Vector Product

Ax = b as linear combination of columns:[
2 1

3 4

] [
4

−2

]
= 4

[
2

3

]
−2

[
1

4

]
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Matrix-Matrix Product

• Matrix-matrix product A = BC:[
2 0

3 1

] [
2 4

0 4

]
=

[
4 8

6 16

]

• A = BC as sum of rank 1 matrices:

[
2 0

3 1

][
2 4

0 4

]
=

[
2

3

] [
2 4

]
+

[
0

1

] [
0 4

]
=

[
4 8

6 12

]
+

[
0 0

0 4

]

=

[
4 8

6 16

]
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Row Reduced Echelon Form

Let A =

 2 2 0

2 4 8

10 16 24


1st Pivot: Replace r2 by r2 − r1, and r3 by r3 − 5r1:2 2 0

0 2 8

0 6 24


2nd Pivot: Replace r3 by r3 − 3r2:2 2 0

0 2 8

0 0 0


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RREF contd.

Divide the first row by 2, the second row by 2:1 1 0

0 1 4

0 0 0


Replace r1 by r1 − r2:

R =

1 0 −4

0 1 4

0 0 0


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Rank

A =

 2 2 0

2 4 8

10 16 24

 RREF−−−→

1 0 −4

0 1 4

0 0 0

 = R

Definitions:

• Rank = Number of non-zero pivots = 2

• Basis vectors of row space = rows corresponding to non-zero pivots in R
v1 =

[
1
0
−4

]
and v2 =

[
0
1
4

]
• Basis vectors of column space = Columns of A corresponding to

non-zero pivots of R.

u1 =
[

2
2
10

]
and u2 =

[
2
4
16

]
• A as sum of the product of rank 1 matrices

A = u1v
T
1 + u2v

T
2 =

[
2
2
10

]
[ 1 0 −4 ] +

[
2
4
16

]
[ 0 1 4 ]
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Null Space

Null space of A = All vectors x such that Ax = 0.
This includes the 0 vector

[
0
0
0

]
Is there a vector x = (x1, x2, x3) ∈ R3, such that
Ax = x1

[
2
2
10

]
+ x2

[
2
4
16

]
+ x3

[
0
8
24

]
=

[
0
0
0

]
x = (1,−1, 1/4), or any of its scalar multiples, satisfies Ax = 0

Dimension of Null Space of A= Number of columns (A) - rank(A)= 3− 2 = 1
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Spaces for A

Let A be m× n matrix with real entries.
Let R be RREF of A consisting of r ≤ min{m,n} non-zero pivots.

1. rank(A) = r

2. Column space is a subspace of Rm of dimension r, and its basis vectors
are the columns of A corresponding to the non-zero pivots in R.

3. Row space is a subspace of Rn of dimension r, and its basis vectors are
the rows of R corresponding to the non-zero pivots.

4. The null-space of A consists of all the vectors x ∈ Rn satisfying Ax = 0.
They form a subspace of dimension n− r.

11



Eigenvalues



Eigenvalues and Eigenvectors

Given an n× n matrix A.
A non-zero vector v is an eigenvector of A, if Av = λv for some scalar λ.
λ is the eigenvalue corresponding to vector v.

Example

Let A =

[
2 1

3 4

]

Observe that

[
2 1

3 4

][
1

3

]
= 5

[
1

3

]
and

[
2 1

3 4

][
1

−1

]
= 1

[
1

−1

]

Thus, λ1 = 5 and λ2 = 1 are the eigenvalues of A.
Corresponding eigenvectors are v1 = [1, 3] and v2 = [1,−1], as Av1 = λ1v1

and Av2 = λ2v2.
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Computation of Eigenvalues and Eigenvectors

Given an n× n matrix A, we want to find eigenvalues λ’s and the
corresponding eigenvectors that satisfy Av = λv.

We can express Av = λv as (A− λI)v = 0, where I is n× n identity matrix.

Suppose B = A− λI.

If B is invertible, than the only solution of Bv = 0 is v = 0.
Reason: v = B−1Bv = B−1(Bv) = B−10 = 0.

=⇒ B isn’t invertible and hence the determinant of B is 0.

We solve the equation det(A− λI) = 0 to obtain eigenvalues λ.

Once we know an eigenvalue λi, we can solve Avi = λivi to obtain the
corresponding eigenvector vi.
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Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of A =

[
2 1

3 4

]

det(A− λI) =

[
2− λ 1

3 4− λ

]
= 0

(2− λ)(4− λ)− 3 = 0

λ2 − 6λ+ 5 = 0, and the two roots are λ1 = 5 and λ2 = 1.

To find the eigenvector v1 = [a, b], we can solve

[
2 1

3 4

][
a

b

]
= 5

[
a

b

]
.

This gives: 2a+ b = 5a and b = 3a. Thus v1 = [1, 3] is an eigenvector
corresponding to λ1 = 5.

Similarly, for v2, we have

[
2 1

3 4

][
a

b

]
= 1

[
a

b

]
.

This gives 2a+ b = a, or a = −b. Thus, v2 = [1,−1] is an eigenvector
corresponding to λ2 = 1.
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Matrices with distinct eigenvalues

Propertry
Let A be an n× n real matrix with n distinct eigenvalues.
The corresponding eigenvectors are linearly independent.

Proof: Proof by contradiction. Let λ1, . . . , λn be the distinct eigenvalues and
v1, . . . , vn the corresponding eigenvectors, that are linearly dependent.

Assume v1, . . . , vn−1 are L.I. (otherwise work with a smaller set).

Dependence =⇒ α1v1 + . . .+ αn−1vn−1 + αnvn = 0, where αn 6= 0.

=⇒ vn = −α1
αn

v1 + . . .+
−αn−1

αn
vn−1

Multiply by A: Avn = λnvn = −α1
αn

λ1v1 + . . .+
−αn−1

αn
λn−1vn−1

Multiply by λn: λnvn = −α1
αn

λnv1 + . . .+
−αn−1

αn
λnvn−1

Subtract last two equations:
0 = −α1

αn
(λn − λ1)v1 + . . .+

−αn−1

αn
(λn − λn−1)vn−1

Since, λn − λi 6= 0, =⇒ the vectors v1, . . . , vn−1 are linearly dependent.
A contradiction.
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Matrices with distinct eigenvalues

Let A be an n× n real matrix with n distinct eigenvalues.
Let λ1, . . . , λn be the distinct eigenvalues and let x1, . . . , xn be the
corresponding eigenvectors, respectively. Let each xi = [xi1, xi2, . . . , xin].

Define an eigenvector matrix X =


x11 x21 . . . xn1

...
...

...
...

x1n x2n . . . xnn



Define a diagonal n× n matrix Λ =


λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
...

...
...

0 0 . . . 0 λn


Consider the matrix product AX,

AX = A

x1 . . . xn

 =

λ1x1 . . . λnxn

 = XΛ
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Matrices with distinct eigenvalues

Since eigenvectors are linearly independent, we know that X−1 exists.

Multiply by X−1 on both the sides from left in AX = XΛ and we obtain

X−1AX = X−1XΛ = Λ (1)

and when we multiply on the right we obtain

AXX−1 = A = XΛX−1 (2)

An Application of Diagonalization A = XΛX−1

Consider A2 = (XΛX−1)(XΛX−1) = XΛ(X−1X)ΛX−1 = XΛ2X−1

=⇒ A2 has the same set of eigenvectors as A, but eigenvalues are
squared.

Similarly, Ak = XΛkX−1.
Eigenvectors of Ak are same as that of A and its eigenvalues are raised to
the power of k.
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Eigenvalues of Ak

Let Avi = λivi

Consider: A2vi = A(Avi) = A(λivi) = λi(Avi) = λi(λivi) = λ2
i vi

=⇒ A2vi = λ2
i vi

Eigenvalues of Ak

For an integer k > 0, Ak has the same eigenvectors as A, but the
eigenvalues are λk.
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Symmetric Matrices

Example
Consider symmetric matrix S = [ 3 1

1 3 ].
Its eigenvalues are λ1 = 4 and λ2 = 2 and the corresponding eigenvectors
are q1 = (1/

√
2, 1/
√

2) and q2 = (1/
√

2,−1/
√

2), respectively.
Note that eigenvalues are real and the eigenvectors are orthonormal.

S =

[
3 1

1 3

]
=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

][
4 0

0 2

][
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]

Eigenvalues of Symmetric Matrices
All the eigenvalues of a real symmetric matrix S are real. Moreover, all
components of the eigenvectors of a real symmetric matrix S are real.
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Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.

Proof: Let q1 and q2 be eigenvectors corresponding to λ1 6= λ2, respectively.
We have Sq1 = λ1q1 and Sq2 = λ2q2.
Now (Sq1)T = qT1 S

T = qT1 S = λ1q
T
1 , as S is symmetric,

Multiply by q2 on the right and we obtain λ1q
T
1 q2 = qT1 Sq2 = qT1 λ2q2.

Since λ1 6= λ2 and λ1q
T
1 q2 = qT1 λ2q2, this implies that qT1 q2 = 0 and thus the

eigenvectors q1 and q2 are orthogonal.
2
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Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues
Let S be a n× n symmetric matrix with n distinct eigenvalues and let
q1, . . . , qn be the corresponding orthonormal eigenvectors. Let Q be the
n× n matrix consiting of q1, . . . , qn as its columns. Then
S = QΛQ−1 = QΛQT . Furthermore, S = λ1q1q

T
1 + λ2q2q

T
2 + · · ·+ λnqnq

T
n

S =

[
3 1

1 3

]
= 4

[
1/
√
2

1/
√
2

] [
1/
√
2 1/

√
2
]
+ 2

[
1/
√
2

−1/
√
2

] [
1/
√
2 −1/

√
2
]
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Summary for Symmetric Matrices

Theorem
For a real symmetric n× n matrix S, we have

1. All eigenvalues of S are real.

2. S can be expressed as S = QΛQT , where Q consists of orthonormal
basis of Rn formed by n eigenvectors of S, and Λ is a diagonal matrix
consisting of n eigenvalues of S.

3. S can be expressed as the sum of the product of rank 1 matrices:

S = λ1q1q
T
1 + . . .+ λnqnq

T
n

Note: Since Q is a basis of Rn, any vector x can be expressed as a linear
combination x = α1q1 + . . .+ αnqn

Consider x · qi = (α1q1 + . . .+ αnqn) · qi = αi
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Inverse of Symmetric Matrices

Claim

S = QΛQT and S−1 = 1
λ1
q1q

T
1 + . . .+ 1

λn
qnq

T
n

Proof Sketch: S = QΛQT = λ1q1q
T
1 + . . .+ λnqnq

T
n

SS−1 = (λ1q1q
T
1 + . . .+ λnqnq

T
n )( 1

λ1
q1q

T
1 + . . .+ 1

λn
qnq

T
n ) = I as q1, . . . , qn

are orthonormal.
2
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Positive Definite Matrices

Positive Definite Matrices
A symmetric matrix S is positive definite if all its eigenvalues > 0.
It is positive semi-definite if all the eigenvalues are ≥ 0.

An Alternate Characterization
Let S be a n× n real symmetric matrix. For all non-zero vectors x ∈ Rn, if
xTSx > 0 holds, then all the eigenvalues of S are > 0.

Proof: Let λi be an eigenvalue of S.
Let the corresponding unit eigenvector is qi.
Note that qTi qi = 1.
Since S is symmetric, we know that λi is real.
Now we have, λi = λiq

T
i qi = qTi λiqi = qTi Sqi.

But qTi Sqi > 0, hence λi > 0.
2
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Eigenvalue Identities

Trace
Let λ1, . . . , λn be eigenvalues of n× n real matrix A.

trace(A) =
n∑
i=1

aii =
n∑
i=1

λi

Determinant

det(A) =
n∏
i=1

λi
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