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Introduction



1. A Rectangular Array

2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse;
Determinant

3. Row Operations; Linear Equations; Gaussian Elimination

4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular;
Orthogonal; Orthonormal

5. Transformations - Eigenvalues and Eigenvectors
6. Rank; Column and Row Space; Null Space

7. Applications: Page Rank, Dimensionality Reduction, Recommender
Systems, ...



Utility Matrix M

A Matrix M where rows represent users, columns items, and entries in M
represents the ratings.

1 1 1 0 0

3 3 3 0 0

4 4 4 0 O
M=1]5 5 5 0 0=

0O 2 0 4 4

0O 0 0 5 5

o 1 0 2 2
13 —.02 .01
41 —.07 .03
.55 —.1 .04 12.5 0 0 .56 .59 .56 .09 .09
.68 —.11 .05 |: 0 9.5 0 :l |:.12 .02 —-.12 .69 .69
.15 .59 —.65 0 0 1.35 .40 =) .40 .09 .09
.07 .73 .67
.07 .29 —-.32

Questions: How to guess missing entries? How to guess ratings for a new
user? ...



Matrix Vector Product

Matrix-vector product: Az =b
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Matrix Vector Product

Ax = b as linear combination of columns:
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Matrix-Matrix Product

e Matrix-matrix product A = BC:

2 4 |4 8
0 4| |6 16

e A = BC as sum of rank 1 matrices:

A

2 0
3 1
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Row Reduced Echelon Form

2 2 0
letA=12 4 8
10 16 24

1st Pivot: Replace r2 by ro — 1, and r3 by r3 — 5r1:

2 2 0
0 2 8
0 6 24

2nd Pivot: Replace r3 by r3 — 3ra:

S O N
S NN
S o O




RREF contd.

Divide the first row by 2, the second row by 2:

S O =
O = =
S = O

Replace 1 by r1 — 72!



2 2 0 1 0 —4
A=12 4 8| o 1 4|=R
10 16 24 00 0

Definitions:

e Rank = Number of non-zero pivots = 2
e Basis vectors of row space = rows corresponding to non-zero pivots in R
1 0
=S 0 =1
= [ 0 |jandu = 2]
e Basis vectors of column space = Columns of A corresponding to
non-zero pivots of R.

=[] = ]

e A as sum of the product of rank 1 matrices

A = urol + upvs = [130] [10 —4}—|—[421} [014]
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Null space of A = All vectors z such that Az = 0.
This includes the 0 vector [%}

Is there a vector = = (x1, 2, 3) € R?, such that
2 2 0 0

A$:$1[2]+$2[4}+J}3[8i| = [0}
10 16

24 0

x = (1,—1,1/4), or any of its scalar multiples, satisfies Az =0

Dimension of Null Space of A= Number of columns (A) - rank(4)=3 -2 =1



Spaces for A

Let A be m x n matrix with real entries.
Let R be RREF of A consisting of » < min{m, n} non-zero pivots.

1.
2.

rank(A) =r
Column space is a subspace of R™ of dimension r, and its basis vectors
are the columns of A corresponding to the non-zero pivots in R.

Row space is a subspace of R™ of dimension r, and its basis vectors are
the rows of R corresponding to the non-zero pivots.

The null-space of A consists of all the vectors x € R" satisfying Az = 0.
They form a subspace of dimension n — r.



Eigenvalues




Eigenvalues and Eigenvectors

Given an n x n matrix A.
A non-zero vector v is an eigenvector of A, if Av = \v for some scalar .
A is the eigenvalue corresponding to vector v.

Example

Let A =

2 1
3 4

Observe that

2 1] 1 —5 1 and 2 1 1 1 1
3 4] (3 3 3 4| |-1 —1
Thus, A1 =5 and A2 = 1 are the eigenvalues of A.

Corresponding eigenvectors are v; = [1,3] and v2 = [1, —1], as Avi = A\jv;
and Avg = \ava.




Computation of Eigenvalues and Eigenvectors

Given an n x n matrix A, we want to find eigenvalues \’'s and the
corresponding eigenvectors that satisfy Av = Av.

We can express Av = Av as (A — AXI)v = 0, where I is n x n identity matrix.
Suppose B = A — \I.

If B is invertible, than the only solution of Bv = 0is v = 0.
Reason: v = B™'Bv = B~ '(Bv) = B~'0 = 0.

= B isn'tinvertible and hence the determinant of B is 0.
We solve the equation det(A — AI) = 0 to obtain eigenvalues \.

Once we know an eigenvalue \;, we can solve Av;, = \;v; to obtain the
corresponding eigenvector v;.



Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of A = z ﬂ

2-1 1
det(A—)\I)—[ ) 4_4—0
(2-N)A-XA)-3=0

A2 — 6\ +5 =0, and the two roots are \; = 5 and X\ = 1.

. . 2 1
To find the eigenvector v = [a, b], we can solve {3 4] [Z} =5 {Z} .

This gives: 2a + b = 5a and b = 3a. Thus v, = [1, 3] is an eigenvector
corresponding to A\ = 5.

Similarly, for vz, we have 2 1 ja —1|%.
3 4| |b b

This gives 2a + b = a, or a = —b. Thus, v, = [1, —1] is an eigenvector
corresponding to A; = 1.



Matrices with distinct eigenvalues

Propertry
Let A be an n x n real matrix with n distinct eigenvalues.
The corresponding eigenvectors are linearly independent.

Proof: Proof by contradiction. Let A1, ..., A\, be the distinct eigenvalues and
v1, ..., vy, the corresponding eigenvectors, that are linearly dependent.

Assume vy, ...,v,—1 are L.I. (otherwise work with a smaller set).

Dependence — aivi + ...+ @n—1Vn—1 + anv, = 0, where «,, # 0.

—an_1

X
Sy ..+ 2=y,

@ Qg

= v, =

MU|tIp|y by A Avy = MUy = =2\ + ...+ %;‘1)\”,1@”,1

Qan

Multiply by Az Apvn = =22\, 01 + ... + %ﬁ:l)\nvn_l

Qn

Subtract last two equations:
0= _(;:11 (An - )\l)vl I ooo T M(>\n - Anfl)v’nfl

(10)

Since, A\, — \; # 0, = the vectors v, ...,v,_1 are linearly dependent.
A contradiction.



Matrices with distinct eigenvalues

Let A be an n x n real matrix with n distinct eigenvalues.

Let \1,..., A\, be the distinct eigenvalues and let z1, . .., z,, be the
corresponding eigenvectors, respectively. Let each x; = [zi1, Zi2, . . ., Tin].
11 21 000 Inl

Define an eigenvector matrix X =

Tin Ton Tnn
A0 0 0
0 X O 0
Define a diagonal n x n matrix A = .
0 0 0 A

Consider the matrix product AX,

AX =A a8l In| — )\1331 An,xn = XA



Matrices with distinct eigenvalues

Since eigenvectors are linearly independent, we know that X ! exists.

Multiply by X ~* on both the sides from left in AX = XA and we obtain
XTTAX = XT'XA=A (1)
and when we multiply on the right we obtain
AXX'=A=XAX"! ()

An Application of Diagonalization A = XAX !

Consider A? = (XAX 1)(XAX ') = XAX 'X)AX ' = XA2X !

— A2 has the same set of eigenvectors as A, but eigenvalues are
squared.

Similarly, A¥ = XAFX 1.

Eigenvectors of A* are same as that of A and its eigenvalues are raised to
the power of k.



Eigenvalues of A*

Let Av; = \jv;

Consider: AQUi = A(A’Ul) = A()\ﬂ}l) = )\1(141)1) = )\I(A,U,) = )\,21}1
— AQUi = )\?U»L

Eigenvalues of A*

For an integer k& > 0, A* has the same eigenvectors as A, but the
eigenvalues are \*.



Symmetric Matrices

Example

Consider symmetric matrix S = [$ 1].

Its eigenvalues are A1 = 4 and A\, = 2 and the corresponding eigenvectors
are q1 = (1/v2,1/v/2) and ¢2 = (1/v/2, —1//2), respectively.

Note that eigenvalues are real and the eigenvectors are orthonormal.

s |3 1| = 1/v/2 1/V/2 | |4 0] [1/v/2 1/V2
o3 |/v2 o —1Vv2Zl |0 2| [1/v2 —1/V2

Eigenvalues of Symmetric Matrices
All the eigenvalues of a real symmetric matrix S are real. Moreover, all
components of the eigenvectors of a real symmetric matrix S are real.



Symmetric Matrices (contd.)

Property
Any pair of eigenvectors of a real symmetric matrix S corresponding to two
different eigenvalues are orthogonal.

Proof: Let g1 and ¢2 be eigenvectors corresponding to A1 # A2, respectively.
We have Sq1 = A\iq1 and qu = A\2qo2.
Now (Sq1)T = ¢f 8™ = ¢S = \i¢f, as S is symmetric,
Multiply by ¢- on the right and we obtain A1¢f ¢2 = ¢F Sq2 = ¢F Maqo.
Since A1 # X2 and M\i¢f g2 = ¢ A2ge, this implies that ¢7 ¢2 = 0 and thus the
eigenvectors ¢; and ¢» are orthogonal.

O
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Symmetric Matrices (contd.)

Symmetric matrices with distinct eigenvalues

Let S be a n x n symmetric matrix with n distinct eigenvalues and let
qi,---,qn be the corresponding orthonormal eigenvectors. Let @ be the

n X n matrix consiting of ¢1, . . ., ¢, as its columns. Then

S =QAQ* = QAQT. Furthermore, S = A\iqiqf + X2q2¢2 + - + Angngt

s=[1 3 =[alwvE vae [ R v va
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Summary for Symmetric Matrices

Theorem
For a real symmetric n x n matrix S, we have

1. All eigenvalues of S are real.

2. S can be expressed as S = QAQ™, where Q consists of orthonormal
basis of R"™ formed by n eigenvectors of S, and A is a diagonal matrix
consisting of n eigenvalues of S.

3. S can be expressed as the sum of the product of rank 1 matrices:

8= )\1q1q1T +...+ )\nqnqz

Note: Since Q is a basis of R", any vector x can be expressed as a linear
combination z = a1q1 + ... + angn

Consider - qi = (alql +...+ anQn) C Qi = Oy

22



Inverse of Symmetric Matrices

Claim
S =QAQT and S = %qlqlT + ...+ %ﬂqnqz

Proof Sketch: S = QAQ” = A1qigf + ... + Angngl

887 = (Mqgf + -+ M@)o gl + o+ o @ngn) =185 q1,. - 00
are orthonormal.
|

23



Positive Definite Matrices

Positive Definite Matrices
A symmetric matrix S is positive definite if all its eigenvalues > 0.
It is positive semi-definite if all the eigenvalues are > 0.

An Alternate Characterization
Let S be a n x n real symmetric matrix. For all non-zero vectors = € R", if
zT Sz > 0 holds, then all the eigenvalues of S are > 0.

Proof: Let \; be an eigenvalue of S.

Let the corresponding unit eigenvector is g;.
Note that ¢f ¢; = 1.

Since S is symmetric, we know that \; is real.
Now we have, \i = \iq! ¢ = ¢F \iqi = ¢F Sqi.
But ¢ S¢; > 0, hence \; > 0.

24



Eigenvalue Identities

Trace
Let \q, .. /\ be elgenvalues of n x n real matrix A.

trace(A ) Z ai; = Z i

Determinant

det(4) = T A
i=1

25



	Introduction
	Eigenvalues

