Markov Chains and Page Rank

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Matrices

Matrices

- 1. A Rectangular Array
- 2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse; Determinant
- 3. Row Operations; Linear Equations; Gaussian Elimination
- 4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular; Orthogonal; Orthonormal
- 5. Transformations Eigenvalues and Eigenvectors
- 6. Rank; Column and Row Space; Null Space
- Applications: Page Rank, Dimensionality Reduction, Recommender Systems, . . .

Matrix Vector Product

Matrix-vector product: Ax = b

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \times 4 + 1 \times -2 \\ 3 \times 4 + 4 \times -2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Matrix Vector Product

Ax = b as linear combination of columns:

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

4

Eigenvalues and Eigenvectors

Given an $n \times n$ matrix A.

A non-zero vector v is an eigenvector of A, if $Av=\lambda v$ for some scalar λ . λ is the eigenvalue corresponding to vector v.

Example

Let
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

Observe that

$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Thus, $\lambda_1 = 5$ and $\lambda_2 = 1$ are the eigenvalues of A.

Corresponding eigenvectors are $v_1=[1,3]$ and $v_2=[1,-1]$, as $Av_1=\lambda_1 v_1$ and $Av_2=\lambda_2 v_2$.

5

Computation of Eigenvalues and Eigenvectors

Given an $n \times n$ matrix A, we want to find eigenvalues λ 's and the corresponding eigenvectors that satisfy $Av = \lambda v$.

We can express $Av = \lambda v$ as $(A - \lambda I)v = 0$, where I is $n \times n$ identity matrix.

Suppose $B = A - \lambda I$.

If B is invertible, than the only solution of Bv = 0 is v = 0.

Reason: $v = B^{-1}Bv = B^{-1}(Bv) = B^{-1}0 = 0.$

Thus B isn't invertible and hence the determinant of B is 0.

We solve the equation $det(A - \lambda I) = 0$ to obtain eigenvalues λ .

Once we know an eigenvalue λ_i , we can solve $Av_i=\lambda_i v_i$ to obtain the corresponding eigenvector v_i .

Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$

$$det(A - \lambda I) = \begin{bmatrix} 2 - \lambda & 1\\ 3 & 4 - \lambda \end{bmatrix} = 0$$

$$(2 - \lambda)(4 - \lambda) - 3 = 0$$

 $\lambda^2 - 6\lambda + 5 = 0$, and the two roots are $\lambda_1 = 5$ and $\lambda_2 = 1$.

To find the eigenvector $v_1=[a,b]$, we can solve $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 5 \begin{bmatrix} a \\ b \end{bmatrix}$.

This gives: 2a + b = 5a and b = 3a. Thus $v_1 = [1, 3]$ is an eigenvector corresponding to $\lambda_1 = 5$.

Similarly, for v_2 , we have $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 1 \begin{bmatrix} a \\ b \end{bmatrix}$.

This gives 2a + b = a, or a = -b. Thus, $v_2 = [1, -1]$ is an eigenvector corresponding to $\lambda_2 = 1$.

7

Eigenvalues of A^k

Let
$$Av_i = \lambda_i v_i$$

Consider:
$$A^2v_i = A(Av_i) = A(\lambda_i v_i) = \lambda_i (Av_i) = \lambda_i (\lambda_i v_i) = \lambda_i^2 v_i$$

 $\implies A^2v_i = \lambda_i^2 v_i$

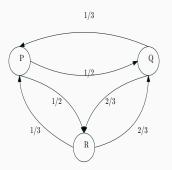
Eigenvalues of A^k

For an integer $k>0,\,A^k$ has the same eigenvectors as A, but the eigenvalues are $\lambda^k.$

8

Markov Matrices

Markov Matrices



	Р	Q	R
Р	0	1/3	1/3
Q	1/2	0	2/3
R	1/2	2/3	0

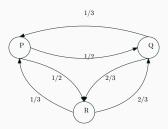
Markov Chain

- X_0, X_1, \ldots be a sequence of r. v. that evolve over time.
- At time 0, we have X_0 , followed by X_1 at time 1, ...
- Assume each X_i takes value from the set $\{1,\ldots,n\}$ that represents the set of states.
- This sequence is a **Markov chain** if the probability that X_{m+1} equals a particular state $\alpha_{m+1} \in \{1, \dots, n\}$ only depends on what is the state of X_m and is completely independent of the states of X_0, \dots, X_{m-1} .

Memoryless property:

$$P[X_{m+1} = \alpha_{m+1} | X_m = \alpha_m, X_{m-1} = \alpha_{m-1}, \dots, X_0 = \alpha_0] = P[X_{m+1} = \alpha_{m+1} | X_m = \alpha_m], \text{ where } \alpha_0, \dots, \alpha_{m+1}, \dots \in \{1, \dots, n\}$$

Memoryless Property



	Р	Q	R
Р	0	1/3	1/3
Q	1/2	0	2/3
R	1/2	2/3	0

Markov Matrices

What is a Markov Matrix?

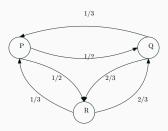
A square matrix A is a Markovian Matrix if

- 1. A[i, j] = probability of transition from the state j to state i.
- 2. Sum of the values within any column is 1 (= probability of leaving from a state to any of the possible states).

State Transitions

Start in an initial state and in each successive step make a transition from the current state to the next state respecting the probabilities.

- 1. What is the probability of reaching the state j after taking n steps starting from the state i?
- 2. Given an initial probability vector representing the probabilities of starting in various states, what is the steady state? After traversing the chain for a large number of steps, what is the probability of landing in various states?



Types of States

Recurrent State: A state i is *recurrent* if starting from state i, with probability 1, we can return to the state i after making finitely many transitions.

Transient State: A state i is transient, i.e. there is a non-zero probability of not returning to the state i.

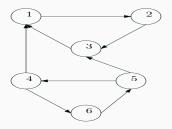
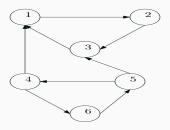


Figure 1: Recurrent States={1,2,3}. Transient States={4,5,6}

Irreducible Markov Chains

A Markov chain is **irreducible** if it is possible to go between any pair of states in a finite number of steps. Otherwise it is called **reducible**.

Observation: If the graph is strongly connected then it is irreducible.



Aperiodic Markov Chains

Period of a state

Period of a state i is the greatest common divisor (GCD) of all possible number of steps it takes the chain to return to the state i starting from i.

Note: If there is no way to return to i starting from i, then its period is undefined.

Aperiodic Markov Chain

A Markov chain is *aperiodic* if the periods of each of its states is 1.

Eigenvalues of Markov Matrices

$$A = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & 0 & 2/3 \\ 1/2 & 2/3 & 0 \end{bmatrix}$$

Eigenvalues of A are the roots of $det(A - \lambda I) = 0$

Eigenvalue	Eigenvector	
$\lambda_1 = 1$	$v_1 = (2/3, 1, 1)$	
$\lambda_2 = -2/3$	$v_2 = (0, -1, 1)$	
$\lambda_3 = -1/3$	$v_3 = (-2, 1, 1)$	

Observe: Largest (principal) eigenvalue is 1 and the corresponding (principal) eigenvector is (2/3,1,1). Note that $Av_i=\lambda_i v_i$, for $i=1,\ldots,3$. Any vector v can be converted to a unit vector: $\frac{v}{||v||}$.

For example, for $v_1=(\frac{2}{3},1,1)$, the unit vector $\frac{v_1}{||v_1||}$ is $\frac{3}{\sqrt{22}}(\frac{2}{3},1,1)$.

The vector $\frac{1}{2/3+1+1}(2/3,1,1)=(2/8,3/8,3/8)$ has the property that all its components add to 1 and it points in the same direction as v_1 .

Principal Eigenvalue of Markov Matrices

Principal Eigenvalue

The largest eigenvalue of a Markovian matrix is 1

See Notes on Algorithm Design for the proof.

Idea: Let $B = A^T$ $\overrightarrow{1}$ is an Eigenvector of B, as $\overrightarrow{B1} = \overrightarrow{1}$ $\implies 1$ is an Eigenvalue of A.

Using contradiction, show that B cannot have any eigenvalue >1

Eigenvalues of Powers of A

$$A = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & 0 & 2/3 \\ 1/2 & 2/3 & 0 \end{bmatrix}$$

Note that all the entries in ${\cal A}^2$ are >0 and all the entries within a column still adds to 1.

$$A^2 = \begin{bmatrix} 1/3 & 2/9 & 2/9 \\ 1/3 & 11/17 & 1/6 \\ 1/3 & 1/6 & 11/17 \end{bmatrix}$$

A^k is Markovian

If the entries within each column of A adds to 1, then entries within each column of A^k , for any integer k>0, will add to 1.

Random Surfer Model

Initial: Surfer with probability vector $u_0 = (1/3, 1/3, 1/3)$

$$u_1 = Au_0 = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & 0 & 2/3 \\ 1/2 & 2/3 & 0 \end{bmatrix} \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} = \begin{bmatrix} 4/18 \\ 7/18 \\ 7/18 \end{bmatrix}$$

$$u_2 = Au_1 = \begin{bmatrix} 0 & 1/3 & 1/3 \\ 1/2 & 0 & 2/3 \\ 1/2 & 2/3 & 0 \end{bmatrix} \begin{bmatrix} 4/18 \\ 7/18 \\ 7/18 \end{bmatrix} = \begin{bmatrix} 7/27 \\ 10/27 \\ 10/27 \end{bmatrix}$$

Likewise, we compute $u_3 = Au_2 = [20/81, 61/162, 61/162]$, $u_4 = Au_3 = [61/243, 91/243, 91/243]$, $u_5 = Au_4 = [182/729, 547/1458, 547/1458]$, ... $u_{\infty} = [0.25, 0.375, 0.375] = [2/8, 3/8, 3/8]$

Linear Combination of Eigenvectors

$$u_0 = \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} = c_1 \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{array}{rcl} u_1 & = & Au_0 \\ \\ & = & c_1Av_1 + c_2Av_2 + c_3Av_3 \\ \\ & = & c_1\lambda_1v_1 + c_2\lambda_2v_2 + c_3\lambda_3v_3 \ (\text{as} \ Av_i = \lambda_iv_i) \end{array}$$

Thus,

$$u_1 = A \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} = c_1 \lambda_1 \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} + c_2 \lambda_2 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3 \lambda_3 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Linear Combination of Eigenvectors(contd.)

$$u_2 = Au_1 = A^2 u_0 = c_1 \lambda_1^2 \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} + c_2 \lambda_2^2 \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3 \lambda_3^2 \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

In general, for integer k>0, $u_k=A^ku_0=c_1\lambda_1^kv_1+c_2\lambda_2^kv_2+c_3\lambda_3^kv_3,$ i.e.

$$u_k = A^k \begin{bmatrix} 1/3 \\ 1/3 \\ 1/3 \end{bmatrix} = c_1 \lambda_1^k \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} + c_2 \lambda_2^k \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3 \lambda_3^k \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

and that equals

$$u_k = c_1 1^k \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} + c_2 \left(-\frac{2}{3}\right)^k \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3 \left(-\frac{1}{3}\right)^k \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

Linear Combination of Eigenvectors(contd.)

For large values of k, $(\frac{2}{3})^k \to 0$ and $(\frac{1}{3})^k \to 0$. The above expression reduces to

$$u_k \approx c_1 \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} = \frac{3}{8} \begin{bmatrix} 2/3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/8 \\ 3/8 \\ 3/8 \end{bmatrix}$$

Note that the value of \emph{c}_1 is derived by solving the equation for

$$u_0 = c_1 v_1 + c_2 v_2 + c_3 v_3$$
 for $u_0 = [1/3, 1/3, 1/3]$

Linear Combination of Eigenvectors(contd.)

```
Suppose u_0 = [1/4, 1/4, 1/2]

u_1 = Au_0 = [1/4, 11/24, 7/24]

u_2 = Au_1 = [1/4, 23/72, 31/72]

u_3 = Au_2 = [1/4, 89/216, 73/216]

...

u_{\infty} = [2/8, 3/8, 3/8]
```

Convergence?

Entries in A^k

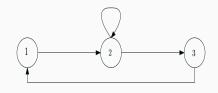
Assume that all the entries of a Markov matrix A, or of some finite power of A, i.e. A^k for some integer k>0, are strictly >0. A corresponds to an irreducible aperiodic Markov chain.

Irreducible: for any pair of states i and j, it is always possible to go from state i to state j in finite number of steps with positive probability.

Period of a state i: GCD of all possible number of steps it takes the chain to return to the state i starting from i.

Aperiodic: M is aperiodic if the GCD is 1 for the period of each of the states in M.

Properties of Markov Matrix A, when $A^k>0$



$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{bmatrix} A^2 = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1/2 & 0 \\ 0 & 1/2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & 1/4 & 1 \\ 1/2 & 1/4 & 0 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1/2 & 1/4 & 0 \\ 1/4 & 5/8 & 1/2 \\ 1/4 & 1/8 & 1/2 \end{bmatrix} A^{4} = \begin{bmatrix} 1/4 & 1/8 & 1/2 \\ 5/8 & 9/16 & 1/4 \\ 1/8 & 5/16 & 1/4 \end{bmatrix}$$

 $A^4 > 0$ and for $k \ge 4$, $A^k > 0$.

A corresponds to irreducible aperiodic Markov chain.

Perron-Frobenius Theorem

Assume A corresponds to an irreducible aperiodic Markov chain M.

Perron-Frobenius Theorem from linear algebra states that

- 1. Largest eigenvalue 1 of A is unique
- 2. All other eigenvalues of A have magnitude strictly smaller than 1
- 3. All the coordinates of the eigenvector v_1 corresponding to the eigenvalue $1~{\rm are}>0$
- 4. The steady state corresponds to the eigenvector v_1

Pagerank

Pagerank Algorithm

Problem: How to rank the web-pages?

Ranking assigns a real number to each web-page.

The higher the number, the more important the page is.

Needs to be automated, as the web is extremely large.

We will study the Page Rank algorithm.

Source: Page, Brin, Motwani, Winograd, The PageRank citation ranking: Bringing order to the Web published as a technical report in1998).

Web as a Graph

- G = (V, E) is a positively weighted directed graph
- Each web-page is a vertex of G
- If a web-page \boldsymbol{u} points (links) to the web-page \boldsymbol{v} , there is a directed edge from \boldsymbol{u} to \boldsymbol{v}
- The weight of an edge uv is $\frac{1}{\mathsf{out\text{-}degree}(u)}$

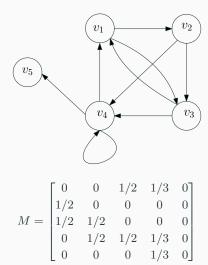
Assume
$$V = \{v_1, \dots, v_n\}$$

 $n \times n$ adjacency matrix M of G is:

$$M(i,j) = \left\{ \begin{array}{ll} \frac{1}{\mathsf{out\text{-}degree}(v_j)}, & \text{if } v_j v_i \in E \\ 0 & \text{otherwise} \end{array} \right.$$

Assumption: A surfer will make a random transition from a web-page to what it points to.

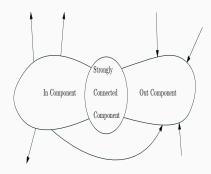
An Example



Remarks

- 1. Assumes users will visit useful pages rather than useless pages.
- 2. Random Surfer Model Assume initially a web-surfer is equally likely to be at any node of G, given by the vector $v_0 = (1/|V|, \dots, 1/|V|)$.
- 3. In each step it makes a transition: $v_1 = Mv$, $v_2 = Mv_1 = M^2v_0$, ..., $v_k = Mv_{k-1} = M^kv_0$.
- 4. Need to worry about sink nodes/dead ends; circling within same set of nodes; and whether we will reach a steady state?

Abstract representation of a web graph

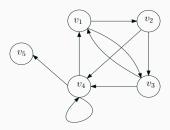


- In-Component: Nodes that can reach strongly-connected component
- Out-component: Nodes that can be reached from strongly-connected component
- Possibly multiple copies of above configuration

Avoiding Sink Nodes

Idea: Make sink nodes point to all other nodes.

$$M = \begin{bmatrix} 0 & 0 & 1/2 & 1/3 & 0 \\ 1/2 & 0 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 1/3 & 0 \\ 0 & 0 & 0 & 1/3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1/2 & 1/3 & 1/5 \\ 1/2 & 0 & 0 & 0 & 1/5 \\ 1/2 & 1/2 & 0 & 0 & 1/5 \\ 0 & 1/2 & 1/2 & 1/3 & 1/5 \\ 0 & 0 & 0 & 1/3 & 1/5 \end{bmatrix} = Q$$



Teleportation - Key Idea

Define
$$K = \alpha Q + \frac{1-\alpha}{n}E$$

Teleportation Parameter: $0 < \alpha < 1$, e.g $\alpha = 0.9$

E is a $n \times n$ matrix of all 1s.

Observations on K:

- 1. Each entry of K is > 0
- 2. The entries within each column sums to 1
- 3. K satisfies the requirements of irreducible aperiodic Markov chain
- 4. Its largest eigenvalue is 1
- By Perron-Frobenius Theorem, the steady state (=page ranks) correspond to the principal eigenvector

Conclusions

Computational Issues: $K = \alpha Q + \frac{1-\alpha}{n}E$ Q is sparse and E is special.

Favors: Teleport to specific pages. Teleport to topic-sensitive pages (Sports, Business, Science, News, ...) based on the profile of the user.

Caution: Real story is not that simple

References

- 1. Link Analysis Chapter in mmds.org
- 2. Chapter on Matrices in CS in my notes on algorithm design
- Page, Brin, Motwani, Winograd, The PageRank citation ranking:
 Bringing order to the Web published as a technical report in1998.
- 4. Brin and Page, The Anatomy of a Large-Scale Hypertextual Web Search Engine, Computer Networks 56 (18): 3825-3833, Reprinted in 2012.