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Matrices



1. A Rectangular Array

2. Operations: Addition; Multiplication; Diagonalization; Transpose; Inverse;
Determinant

3. Row Operations; Linear Equations; Gaussian Elimination

4. Types: Identity; Symmetric; Diagonal; Upper/Lower Traingular;
Orthogonal; Orthonormal

5. Transformations - Eigenvalues and Eigenvectors
6. Rank; Column and Row Space; Null Space

7. Applications: Page Rank, Dimensionality Reduction, Recommender
Systems, ...



Matrix Vector Product

Matrix-vector product: Az =b
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Matrix Vector Product

Ax = b as linear combination of columns:
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Eigenvalues and Eigenvectors

Given an n x n matrix A.
A non-zero vector v is an eigenvector of A, if Av = \v for some scalar .
A is the eigenvalue corresponding to vector v.

Example

Let A =

2 1
3 4

Observe that

2 1] 1 —5 1 and 2 1 1 1 1
3 4] (3 3 3 4| |-1 —1
Thus, A1 =5 and A2 = 1 are the eigenvalues of A.

Corresponding eigenvectors are v; = [1,3] and v2 = [1, —1], as Avi = A\jv;
and Avg = \ava.




Computation of Eigenvalues and Eigenvectors

Given an n x n matrix A, we want to find eigenvalues \’'s and the
corresponding eigenvectors that satisfy Av = Av.

We can express Av = Av as (A — AXI)v = 0, where I is n x n identity matrix.
Suppose B = A — \I.

If B is invertible, than the only solution of Bv = 0is v = 0.
Reason: v = B™'Bv = B~ '(Bv) = B~'0 = 0.

Thus B isn’t invertible and hence the determinant of B is 0.
We solve the equation det(A — AI) = 0 to obtain eigenvalues \.

Once we know an eigenvalue \;, we can solve Av;, = \;v; to obtain the
corresponding eigenvector v;.



Computation of Eigenvalues and Eigenvectors

Let us find the eigenvalues and eigenvectors of A = z ﬂ

2-1 1
det(A—)\I)—[ ) 4_4—0
(2-N)A-XA)-3=0

A2 — 6\ +5 =0, and the two roots are \; = 5 and X\ = 1.

. . 2 1
To find the eigenvector v = [a, b], we can solve {3 4] [Z} =5 {Z} .

This gives: 2a + b = 5a and b = 3a. Thus v, = [1, 3] is an eigenvector
corresponding to A\ = 5.

Similarly, for vz, we have 2 1 ja —1|%.
3 4| |b b

This gives 2a + b = a, or a = —b. Thus, v, = [1, —1] is an eigenvector
corresponding to A; = 1.



Eigenvalues of A*

Let Av; = \jv;

Consider: AQUi = A(A’Ul) = A()\ﬂ}l) = )\1(141)1) = )\I(A,U,) = )\,21}1
— AQUi = )\?U»L

Eigenvalues of A*

For an integer k& > 0, A* has the same eigenvectors as A, but the
eigenvalues are \*.



Markov Matrices



Markov Matrices

| P Q R

P|{ 0 13 1/3
Q|12 0 273
R|12 23 0



Markov Chain

- Xo, X1,... be a sequence of r. v. that evolve over time.

- At time 0, we have X, followed by X; attime 1, ...

- Assume each X; takes value from the set {1,...,n} that represents the set
of states.

- This sequence is a Markov chain if the probability that X, equals a
particular state amm+1 € {1,...,n} only depends on what is the state of X,
and is completely independent of the states of Xo,..., X, 1.

Memoryless property:
PlXmt1 = @m+1|Xm = @m, Xm-1 = @m—1,...,X0 = @] = P[Xm41 = tm+41|Xm =
am], where g, ..., Ay, € {1,...,n}



Memoryless Property

| P Q R

Pl 0 13 1/3
Q|12 0 23
R|12 23 0



Markov Matrices

What is a Markov Matrix?

A square matrix A is a Markovian Matrix if

1. Ali, j] = probability of transition from the state j to state i.

2. Sum of the values within any column is 1 (= probability of leaving from a
state to any of the possible states).



State Transitions

Start in an initial state and in each successive step make a transition from the
current state to the next state respecting the probabilities.

1. What is the probability of reaching the state j after taking n steps
starting from the state i?

2. Given an initial probability vector representing the probabilities of starting
in various states, what is the steady state? After traversing the chain for
a large number of steps, what is the probability of landing in various
states?




Types of States

Recurrent State: A state i is recurrent if starting from state ¢, with probability
1, we can return to the state ¢ after making finitely many transitions.

Transient State: A state i is transient, i.e. there is a non-zero probability of
not returning to the state i.

G?@
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Figure 1: Recurrent States={1,2,3}. Transient States={4,5,6}



Irreducible Markov Chains

A Markov chain is irreducible if it is possible to go between any pair of
states in a finite number of steps. Otherwise it is called reducible.

Observation: If the graph is strongly connected then it is irreducible.




Aperiodic Markov Chains

Period of a state
Period of a state i is the greatest common divisor (GCD) of all possible
number of steps it takes the chain to return to the state ¢ starting from .

Note: If there is no way to return to ¢ starting from 4, then its period is
undefined.

Aperiodic Markov Chain

A Markov chain is aperiodic if the periods of each of its states is 1.



Eigenvalues of Markov Matrices

0 1/3 1/3
A=[1/2 0 2/3
1/2 2/3 0

Eigenvalues of A are the roots of det(A — A1) =0

Eigenvalue Eigenvector

=1 v = (2/3,1,1)
)\2:—2/3 02:(07—1,1)
A3 =—1/3 w3 =(-2,1,1)

Observe: Largest (principal) eigenvalue is 1 and the corresponding
(principal) eigenvector is (2/3,1,1). Note that Av; = A\;v;, fori =1,...,3.
Any vector v can be converted to a unit vector:

[l

v

_ (2 H H 3 2
For example, for vi = (3,1, 1), the unit vector TorT] 1S E(g, 1,1).

The vector m@/& 1,1) = (2/8,3/8,3/8) has the property that all its
components add to 1 and it points in the same direction as v, .




Principal Eigenvalue of Markov Matrices

Principal Eigenvalue
The largest eigenvalue of a Markovian matrix is 1

See Notes on Algorithm Design for the proof.

Idea: Let B = AT
T is an Eigenvector of B, as BT =17
= 1is an Eigenvalue of A.

Using contradiction, show that B cannot have any eigenvalue > 1



Eigenvalues of Powers of A

0 1/3 1/3
A=[1/2 0 2/3
1/2 2/3 0

Note that all the entries in A2 are > 0 and all the entries within a column still
adds to 1.

/3  2/9  2/9
A% =|1/3 11/17 1/6
/3 1/6 11/17

A* is Markovian
If the entries within each column of A adds to 1, then entries within each
column of A*, for any integer k > 0, will add to 1.



Random Surfer Model

Initial: Surfer with probability vector uo = (1/3,1/3,1/3)
[0 1/3 1/3] [1/3 4/18
ui = Auo = [1/2 0 2/3| [1/3]| = [7/18
[1/2 2/3 0| |1/3 7/18

0o 1/3 1/3] [4/18 7/27
up = Auy = [1/2 0 2/3| |7/18| = |10/27
11/2 2/3 0| |7/18 10/27

Likewise, we compute uz = Aus, = [20/81,61/162,61/162],
us = Aug = [61/243,91/243,91/243],
us = Auy = [182/729, 547 /1458, 547/1458],

Uoo = [0.25,0.375,0.375] = [2/8,3/8,3/8]
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Linear Combination of Eigenvectors

Thus,

|

u = A

1/3 2/3 0 —2
1/3]—01[ 1 :|+02|:—1:|+C3|: 1 :l
1/3 1 1 1

A’U.()
c1Avy + coAvg + c3Avs
Cc1A1v1 + cadava + c3A3vg (@S Av; = A\;jv;)

1/3 2/3 0
1/3 :| =c1\ l: 1 ] + caa |: -1
1/3 1 1

-2
+ c3A3 1
1
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Linear Combination of Eigenvectors(contd.)

2/3 0 —2
us = Auy :A2u0 :Cl/\f 1 +C2>\§ —1 +C3)\§ 1

1 1 1

In general, for integer k& > 0, up, = A*ug = c1 A\¥v; + coXsvs + ez NS s, ie.

1/3 2/3 0 =
up=A" | 1/3 | =cAf | 1 | 4eb | -1 | +ears| 1
1/3 1 1 1

and that equals

2/3 2 0
uk:cllk 1 +Cz(—7)k —1
1 3
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Linear Combination of Eigenvectors(contd.)

For large values of k, (2)* — 0 and (3)* — 0. The above expression
reduces to

2/3 o[ 2/3 2/8
uk~c1|: 1 :|_|: 1 :|—|:3/8:|
81 1 3/8

1
Note that the value of ¢; is derived by solving the equation for
up = Cc1V1 + Cc2v2 + c3v3 for Uy = [1/3, 1/3, 1/3]
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Linear Combination of Eigenvectors(contd.)

Suppose uo = [1/4,1/4,1/2]

uy = Auo = [1/4, 11/24, 7/24}

uz = Auy = [1/4,23/72,31/72]
uz = Aug = [1/4,89/216, 73/216]

uoo = [2/8,3/8,3/8]
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Convergence?

Entries in A*

Assume that all the entries of a Markov matrix A, or of some finite power of
A, i.e. A* for some integer k > 0, are strictly > 0. A corresponds to an
irreducible aperiodic Markov chain.

Irreducible: for any pair of states 7 and 7, it is always possible to go from
state i to state j in finite number of steps with positive probability.

Period of a state i: GCD of all possible number of steps it takes the chain to
return to the state 7 starting from .

Aperiodic: M is aperiodic if the GCD is 1 for the period of each of the states
in M.
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Properties of Markov Matrix A, when A* > 0

0 0 1 0o 0o 1]fo o 1 0 1/2 0©
A= {1 1/2 o] A*= |1 1/2 0| |1 1/2 0| =[1/2 1/4 1
0 1/2 0 0 1/2 0| [0 1/2 0 1/2 1/4 0
1/2 1/4 0 1/4 1/8 1/2
A*=11/4 5/8 1/2| A*= |5/8 9/16 1/4
1/4 1/8 1/2 1/8 5/16 1/4

A* > 0andfor k > 4, A* > 0.

’ A corresponds to irreducible aperiodic Markov chain.
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Perron-Frobenius Theorem

Assume A corresponds to an irreducible aperiodic Markov chain M.

Perron-Frobenius Theorem from linear algebra states that

1.

Largest eigenvalue 1 of A is unique

2. All other eigenvalues of A have magnitude strictly smaller than 1

3. All the coordinates of the eigenvector v; corresponding to the eigenvalue

lare >0

. The steady state corresponds to the eigenvector v;

27



Pagerank




Pagerank Algorithm

Problem: How to rank the web-pages?

Ranking assigns a real number to each web-page.
The higher the number, the more important the page is.
Needs to be automated, as the web is extremely large.

We will study the Page Rank algorithm.

Source: Page, Brin, Motwani, Winograd, The PageRank citation ranking:
Bringing order to the Web published as a technical report in1998).

28



Web as a Graph

-G = (V, E) is a positively weighted directed graph

- Each web-page is a vertex of G

- If a web-page u points (links) to the web-page v, there is a directed edge
from u to v

- The weight of an edge wv iS ggegeara)

Assume V = {v1,...,vn}
n x n adjacency matrix M of G is:

1 .
M(i, 5) = out-degree(v; ) ’ if vjv; € E
’ 0 otherwise

Assumption: A surfer will make a random transition from a web-page to what
it points to.
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An Example

d

i

(=)
&

0o 0 1/2 1/3
/2 0 0 0
M=|1/2 1/2 0 0
0 1/2 1/2 1/3
0o 0 0 1/3

o O O o o



1. Assumes users will visit useful pages rather than useless pages.

2. Random Surfer Model - Assume initially a web-surfer is equally likely to
be at any node of G, given by the vector vo = (1/|V],...,1/|V]).

3. In each step it makes a transition: v1 = Mv, va = Mv, = M>uy, ..
e = Mog_1 = M.

4. Need to worry about sink nodes/dead ends; circling within same set of
nodes; and whether we will reach a steady state?
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Abstract representation of a web graph

Strongly

In Component Comnected Out Component

Component

e In-Component: Nodes that can reach strongly-connected component

e Out-component: Nodes that can be reached from strongly-connected
component

e Possibly multiple copies of above configuration

32



Avoiding Sink Nodes

Idea: Make sink nodes point to all other nodes.

0 0o 1/2 1/3 0 0 o 1/2 1/3 1/5

1/2 0 0 0o 0 1/2 0 0 0o 1/5
M=|1/2 1/2 0 0 o] = |1/2 1/2 0 0o 1/5| =@

o 1/2 1/2 1/3 0 o 1/2 1/2 1/3 1/5

0 0 0o 1/3 0 0 0 o 1/3 1/5
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Teleportation - Key Idea

Define K = aQ + =2F
Teleportation Parameter: 0 < a < 1,e.ga = 0.9
Eis an x n matrix of all 1s.

Observations on K:

Each entry of K'is > 0

The entries within each column sums to 1

K satisfies the requirements of irreducible aperiodic Markov chain
Its largest eigenvalue is 1

o M 0 Dd =

By Perron-Frobenius Theorem, the steady state (=page ranks)
correspond to the principal eigenvector
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Conclusions

Computational Issues: K = aQ + =%F
Q is sparse and E is special.

Favors: Teleport to specific pages. Teleport to topic-sensitive pages (Sports,
Business, Science, News, ...) based on the profile of the user.

Caution: Real story is not that simple
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