Community Detection in Graphs

Purpose

- ★ Holistic overview of community detection in graphs
 - Structural measures and quality functions
 - Categories of algorithms
 - Challenges in community detection

Structural Measures

- Function of structural measures
- Examples:
 - Betweenness
 - Similarity
 - Distance
- Algorithm specific

Quality Functions - Modularity

- Determine partition efficacy
- Modularity what is it?
- Has been improved over time
- Still contains some limitations

$$Q = \frac{1}{2m} \sum_{ij} (A_{ij} - P_{ij}) \delta(C_i, C_j)$$

Categorizations of Algorithms

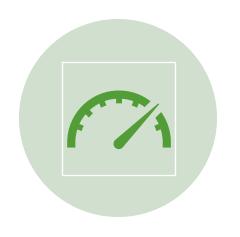
Traditional

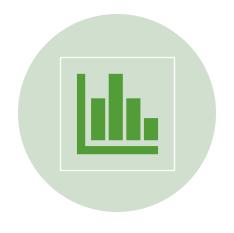
Divisive/agglomerative

Modularity-based

Spectral

Dynamic


Statistical inference


Specialty Methods

Comparison

- Inherently difficult to define best community
- Benchmarks
- Inherits modularity biases in unknown graphs
- Likely is no general best method

Other Challenges

GENERAL EFFICIENCY

INTERPRETATION OF RESULTS

IMPROVED METHODS FOR PROCESSING SPECIAL GRAPHS

References

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174. https://www.sciencedirect.com/science/article/pii/S0370157309002841

Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical Review E, 78(4), 046110. https://doi.org/10.1103/physreve.78.046110

Newman, M. E. J. & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.