Maintaining k-MinHash signatures for fully dynamic data streams

Why k-MinHash Signatures?

• Efficiently detect similarities between large data sets

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

Large sets → large computation

Recall: Key Property

 The probability that the MinHash values of two different sets are the same is the Jaccard similarity of those two sets

$$Pr[\operatorname{MinHash}(A,h) = \operatorname{MinHash}(B,h)] = J(A,B)$$

But how do we find this?

Recall: Key Property

 The probability that the MinHash values of two different sets are the same is the Jaccard similarity of those two sets

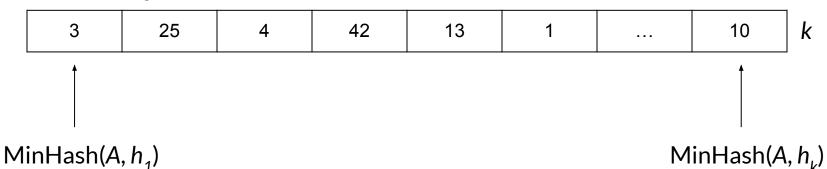
$$\Pr[\mathsf{MinHash}(A,h) = \mathsf{MinHash}(B,h)] = J(A,B)$$

But how do we find this? We don't! We estimate it!

k-MinHash Signatures

- Compressed representations of sets
- *k* independent, uniformly random hash functions

k-MinHash signature of set *A*:



k-MinHash Signatures

• Don't compare a whole set, compare their signatures!

k-MinHash signature of set *A*:

3	25	4	42	13	1	 10	k
<i>k</i> -MinHas	n signature o	f set B:					
3	12	4	22	3	1	 5	k

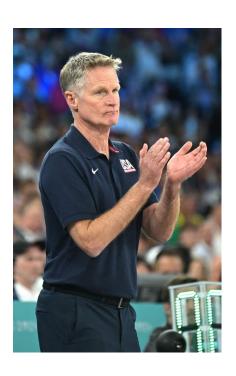
Problem

- Modern data-mining-intensive applications work with large sets of continuously evolving data
- Sets can have elements deleted and inserted
 - An entry of a set's MinHash signature can be deleted
 - A new element's hash can be smaller than the current MinHash

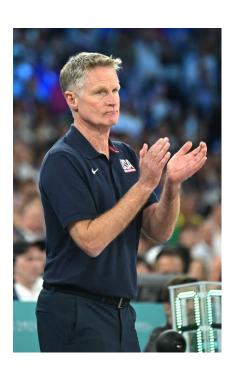
Solution: A New Data Structure

- The *ℓ*-buffered k-MinHash sketch
 - Introduced by Clementi et al. in their paper "Maintaining k-MinHash Signatures over Fully-Dynamic Data Streams with Recovery"
- Always returns the correct k-MinHash signature
- Deals with insertions and deletions pretty well!

l-buffered k-MinHash: Intuition



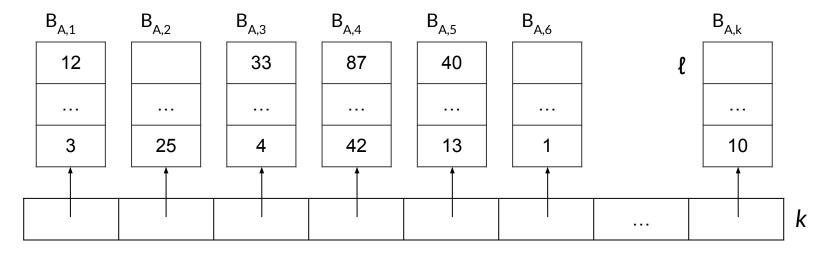
l-buffered k-MinHash: Intuition



l-buffered k-MinHash: Intuition

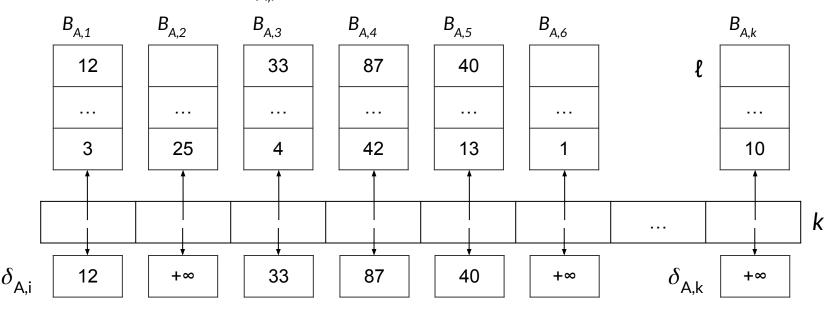
l-buffered *k*-MinHash Sketch

• Buffers at most the \emptysele smallest hashes (implemented as balanced BSTs)



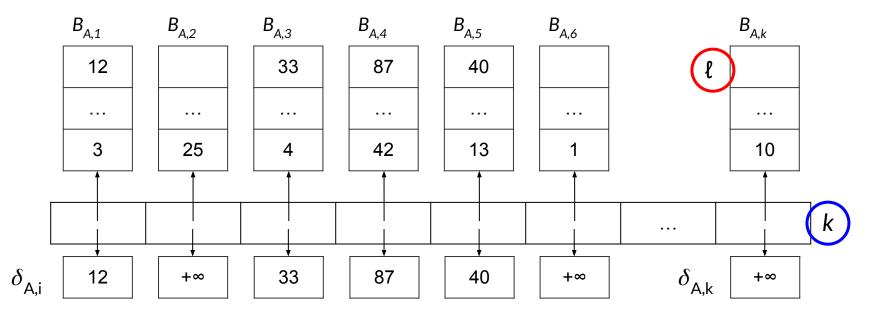
l-buffered *k*-MinHash Sketch

• Stores thresholds $\delta_{\rm A,i}$



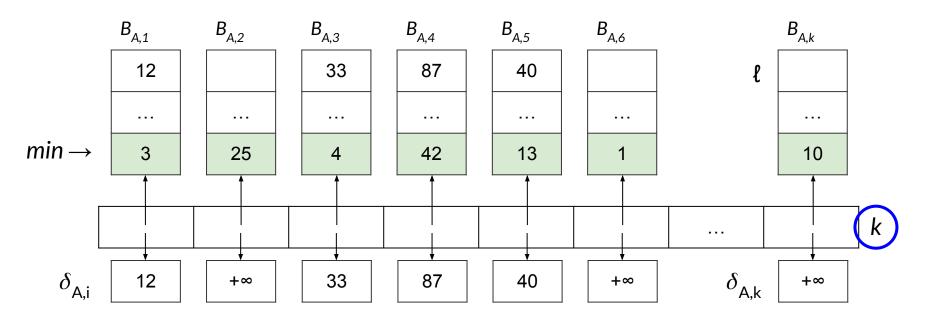
Memory Consumption

Memory usage is O(k ?)



Signature Queries

- Get the minimum value of each buffer (*min* operation in a balanced BST)
- Runs in O(k) time



Sketch Initialization

Suppose $\ell = 4$ and we have a set $A = \{43, 72, 2, 300, 8, 10\}$

For each entry in the sketch:

- 1. We hash every element in A with h_i and get $\{2, 54, 4, 100, 55, 102\}$
- 2. We take the ℓ smallest hashes and put them in buffer $B_{A,i}$

Sketch Initialization

- 3. The buffer is full, so we set the threshold $\delta_{A,i} = max(B_{A,i}) = 55$
 - a. If the buffer was not full, we would set $\delta_{A,i} = +\infty$

$$\delta_{A,i}$$
 55

4. Put $(B_{A,i}, \delta_{A,i})$ in the sketch at entry *i*

Insertions

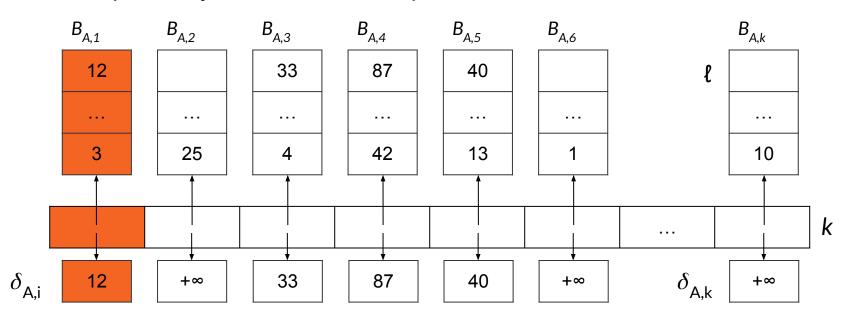
Suppose element *x* is inserted into set *A*.

For each buffer $B_{A,i}$, $i = \{1,...,k\}$:

- 1. Compute $h_i(x)$
- 2. If it's smaller than a buffer's threshold, recompute the \emptyset smallest
- 3. Insert the new \(\) smallest hashes into the buffer
 - a. If the buffer's length is full, recompute $\delta_{A,i} = max(B_{A,i})$

Insertions

For example, let's just look at one entry



Insertions

• Suppose we insert a new element x, where $h_1(x) = 2$

$$B_{A,1}$$
 2 3 4 6 ℓ $\delta_{A,i}$ 6

- Runs in O(k log ?) time
 - Balanced BSTs of size \(\ell\) perform insert and delete operations in O(log\(\ell\)) time

Deletions

Suppose an element *x* is deleted from *A*.

For each buffer $B_{A,i}$, $i = \{1,...,k\}$:

- 1. Delete $h_i(x)$ from the buffer
- 2. If the buffer becomes empty (fault):
 - a. Get the current state of set A with a **recovery query**
 - b. Re-initialize the sketch with A

Deletions

Fault (worst) case:

Suppose an element x is deleted from A, where $h_1(x) = 3$, and we have this buffer:

$$B_{A,1}$$
 3 $\ell \longrightarrow B_{A,1}$

- Fault → Re-initialize the sketch
- We can fine-tune \(\ext{to make faults very rare} \)

Deletions

No fault (average) case:

Suppose an element x is deleted from A, where $h_1(x) = 3$, and we have this buffer:

- Runs in O(k log ?)
 - Balanced BSTs of size \(\ell\) perform insert and delete operations in O(log\(\ell\))
 time

Conclusion

- The **l-buffered k-MinHash sketch** can maintain **k-Minhash signatures for** fully-dynamic data sets
- Memory usage: $O(k \ell)$
- Insertions: O(k log ℓ)
- Deletions: O(k log l) (amortized)

References

[1] A. Clementi, L. Gual`a, L. Pep`e Sciarria, and A. Straziota. Maintaining k-MinHash Signatures over Fully-Dynamic Data Streams with Recovery. In Proc. of the 18th ACM International Conference on Web Search and Data Mining (WSDM), 2025.

[2] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of Massive Datasets (2nd ed.). Cambridge University Press, 2014. ISBN: 9781139924801.