Metric LP Relaxation

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

1

Outline

Min Cost st-cut

Multiway Min Cut

Multicuts in Graphs

References

Min Cost *st*-cut

Input: An undirected graph G = (V, E) on n vertices and each edge has a positive weight $w : E \to \Re^+$. It will be easier to think of G as a complete graph K_n , as all the edges in $K_n \setminus G$ are assigned a weight of 0. Two specific vertices s and t of G.

Output: Find a set of edges $C \subseteq E$ of minimum total weight so that the graph $G' = (V, E \setminus C)$ has no path that between *s* and *t*. I.e., *C* forms a cut of minimum weight that separates *s* and *t*.

- Assume C is a cut.
- Define an indicator variable x_e for each edge e as follows:

$$x_e = \begin{cases} 1, \text{ if } e \in C, \\ 0, \text{ otherwise} \end{cases}$$

Observations:

- 1. Cost of Cut equals $\sum_{e \in E} x_e w_e$.
- 2. Length of any path $\pi(s,t)$ joining s and t is ≥ 1 . Length of π is defined as the sum total of x_e 's values of the edges of π .

Metric Property

The variables x_e 's assigned to the edges of G satisfy the metric property.

Problem: Given a complete graph G = (V, E), where edges have non-negative weights $e : E \to \Re^+$, and two vertices *s* and *t*, find the cut of minimum total weight that separates *s* and *t*.

(Integer) Metric LP Formulation

$$\min\sum_{e\in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E$, $x_e \in \{0, 1\}$
- 2. Cut Constraint: $x_{st} \ge 1$.
- 3. Triangle Inequality: For every set of three distinct vertices $u, v, w \in V$: $x_{uw} + x_{wv} \ge x_{uv}$

Relaxed LP

Replace the constraint $x_e \in \{0, 1\}$ by $0 \le x_e \le 1$.

Relaxed Metric LP

$$\begin{split} &\min \sum_{e \in E} w_e x_e \\ &\text{Subject to:} \\ &\text{1. For each edge } e \in E, 0 \leq x_e \leq 1 \\ &\text{2. } x_{st} \geq 1. \\ &\text{3. For every set of three distinct vertices } u, v, w \in V : x_{uw} + x_{wv} \geq x_{uv} \end{split}$$

After solving the Relaxed LP, let $x_e \in [0, 1]$ be the assignment of x values to each edge $e \in E$, and let $z^* = \sum_{e \in E} w_e x_e$ be the value of the objective function.

Note that x_e values satisfy:

- 1. Triangle Inequality
- 2. For any path in G between s and t, the length of the path is ≥ 1 .
- 3. The cost of an optimal min cut in G is at least z^* .

Method to find the edges in the cut:

- **Step 1:** Solve the Relaxed Metric LP to obtain x_e values for each edge $e \in E$.
- **Step 2:** For each vertex $v \in V$, find the shortest distance $\delta(s, v)$ from s with respect to x_e values on edges.
- **Step 3:** Choose an arbitrary value $R \in (0, 1)$.
- **Step 4:** For each edge $e = (uv) \in E$ (assume $\delta(s, u) \le \delta(s, v)$), place e in the cut if $\delta(s, u) < R < \delta(s, v)$.
- Step 5: Return the edges in the cut.

Cost of the Cut

Claim

The expected sum total of the weights of the edges in the cut is at most z^* .

Proof: Let *C* be the collection of edges in the cut with respect to $R \in (0, 1)$. Consider an arbitrary edge $e = (uv) \in E$. What is the probability that $e \in C$?

$$\begin{split} e \in C \text{ if } \delta(s,u) < R < \delta(s,v), \text{ i.e. } R \in (\delta(s,u), \delta(s,v)) \\ \text{Therefore, } Pr(e \in C) = \frac{\delta(s,v) - \delta(s,u)}{1} = \delta(s,v) - \delta(s,u). \\ \text{Because of the triangle inequality } \delta(s,v) - \delta(s,u) \leq x_e \end{split}$$

Thus, $Pr(e \in C) \leq x_e$.

$$E[cost(C)] = \sum_{e \in E} w_e Pr(e \in C) \le \sum_{e \in E} w_e x_e = z^*.$$

Finding an optimal Cut

- Notice that when R ranges from 0 to 1, one by one vertices are added to the component containing s.

- In all there are n = |V| such events
- We can find all the events and return the cut that minimizes the total weight.

Observe:

- 1. If for some R the cost of the cut is $> z^*$, than there must be a cut for which the cost $< z^*$, since the average (i.e. expected) value is z^*
- 2. The cost of any cut can't be smaller than z^* (as z^* is the objective value of relaxed LP) \implies the cut returned by the method is of optimal cost for any $R \in (0, 1)$

Theorem

We can find an optimal cut in polynomial time using the Metric LP relaxation.

Multiway Min Cut

Input: An undirected (complete) graph G = (V, E) on n vertices and each edge has a positive weight $w : E \to \Re^+$. A set $T = \{s_1, \ldots, s_k\} \subset V$ of k vertices called terminals.

Output: Find a set of edges $C \subseteq E$ of minimum total weight so that the graph $G' = (V, E \setminus C)$ has no path between any pair of terminals in *T*.

Edges in the Cut

Let *C* be a multiway cut that separates every pair of terminals. Define an indicator variable x_e for each edge *e* as follows:

$$x_e = \begin{cases} 1, \text{ if } e \in C, \\ 0, \text{ otherwise} \end{cases}$$

The assignment of x_e values to each edge satisfies:

- 1. Cost of Multiway Cut equals $\sum_{e \in E} x_e w_e$.
- 2. For any pair of distinct terminals $s_i, s_j \in T$, the length of any path $\pi(s_i, s_j)$ joining s_i and s_j is ≥ 1 .
- 3. x_e values satisfy the triangle inequality. I.e., for any three distinct vertices $u, v, w \in V, x_{uw} + x_{wv} \ge x_{uv}$.

Linear Programming Formulation for Multiway Cuts

Problem: Given a complete graph G = (V, E), where edges have non-negative weights $e : E \to \Re^+$, and a set $T \subset V$ of k terminals, find the cut of minimum total cost that separates every pair of terminals.

(Integer) Metric LP Formulation

$$\min\sum_{e\in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E$, $x_e \in \{0, 1\}$
- 2. Cut Constraint: For every distinct pair $s_i, s_j \in T$, $x_{s_i s_j} \ge 1$.
- 3. Triangle Inequality: For every set of three distinct vertices $u, v, w \in V$: $x_{uw} + x_{wv} \ge x_{uv}$

Relaxed LP

Replace the constraint $x_e \in \{0, 1\}$ by $0 \le x_e \le 1$.

Method for finding the edges in the cut

Step 1: $C \leftarrow \emptyset$

Step 2: Solve the Relaxed Metric LP to obtain x_e values for each edge $e \in E$.

Step 3: Choose an arbitrary value $R \in (0, 1/2)$.

Step 4: For each vertex $s_i \in T$, find the shortest distances $\delta(s_i, v)$ from s_i with respect to x_e values on edges. For each edge $e = (uv) \in E$ (assume $\delta(s_i, u) \leq \delta(s_i, v)$), place e in the cut Cif $\delta(s_i, u) < R < \delta(s_i, v)$.

Step 5: Return the set of edges C.

Let $s_i \in T$ be a terminal, and let $R \in (0, 1/2)$. Define $B(s_i, R) = \{v \in V | \delta(s_i, v) < R\}.$

 $B(s_i, R)$ consists of all the vertices that are within the distance R of s_i .

Disjointness of $B(s_i, R)$ and $B(s_j, R)$

Let $s_i, s_j \in T$ be two distinct terminals and let $B(s_i, R)$ and $B(s_j, R)$ be the set of vertices within distance of $R \in (0, 1/2)$ of s_i and s_j , respectively. Then, $B(s_i, R) \cap B(s_j, R) = \emptyset$

Observation 1

Consider any edge $e = (uv) \in E$, where $u \in B(s_i, R)$. The edge $e \in C$ if $v \notin B(s_i, R)$.

Feasibility

Observation 2

The cut C returned by the method is a feasible multiway cut.

Proof: We need to show that there is no path between any pair of distinct terminals $s_i, s_j \in T$ in the graph G - C.

By the 2nd constraint of LP, $x_{s_i s_j} \ge 1$.

From the triangle inequality any path $\pi(s_i, s_j)$ between s_i and s_j in G will have length ≥ 1 . Alternatively, for any vertex $w \in V$, $\delta(s_i, w) + \delta(s_j, w) \geq 1$.

Distance between any two vertices in a ball $B(s_i, R)$ is < 1.

Thus, for any ball $B(s_i, R)$, only terminal that is in $B(s_i, R)$ is s_i , i.e., $B(s_i, R) \cap T = s_i$.

Hence each connected component of $G \setminus C$ contains at most one terminal. \Box

Observation 3

Let e = (u, v) be an edge in G. $Pr(e \in C) \leq 2x_e$.

Proof: Define sets X_1, \ldots, X_k , where $X_i = \{v \in V | \delta(s_i, v) < 1/2\}$. Note that for any pair of distinct sets $X_i, X_j, X_i \cap X_j = \emptyset$ and $B(s_i, R) \subseteq X_i$.

For the edge e = (u, v), one of the following cases occurs

Case 1: None of the endpoints u, v are in any set. ($\implies e \notin C$ and $Pr(e \in C) = 0 \le 2x_e$)

Case 2: Both u, v are in the same set, say X_i .

Case 3: $u \in X_i$ and $v \in V \setminus X_i$.

We need to estimate $Pr(e \in C)$ for Cases 2 and 3.

Probability of an Edge to be in C (contd.)

Case 2: $u, v \in X_i$. Assume $\delta(s_i, u) \leq \delta(s_i, v)$.

We know $R \in (0, 1/2)$.

$$\begin{split} e &= (u,v) \text{ will be in the cut } C \text{ if } \delta(s_i,u) < R \text{ and } \delta(s_i,v) > R. \\ \text{By triangle inequality we know that } \delta(s_i,v) - \delta(s_i,u) \leq x_e. \\ \text{Since we are choosing } R \text{ uniformly at random in } (0,1/2), \\ Pr(e \in C) &= \frac{\delta(s_i,v) - \delta(s_i,u)}{\frac{1}{2}} \leq 2x_e. \end{split}$$

Case 3:
$$u \in X_i$$
 and $v \in V \setminus X_i$.
We know $\delta(s_i, u) < 1/2$ and $\delta(s_i, v) \ge 1/2$.
By triangle inequality we know that $\delta(s_i, v) - \delta(s_i, u) \le x_e$.
 $e = (u, v)$ will be in the cut *C* if $\delta(s_i, u) < R$.
 $Pr(e \in C) = Pr(R \in (\delta(s_i, u), 1/2)) \le \frac{\frac{1}{2} - \delta(s_i, u)}{\frac{1}{2}} \le 2(\frac{1}{2} - \delta(s_i, u)) \le 2(\delta(s_i, v) - \delta(s_i, u)) \le 2x_e$.

```
Metric LP Relaxation

Multiway Min Cut

Probability of an Edge to be in C (contd.)
```

Probability of an Edge to be in C (contd.)

$$\begin{split} & \operatorname{Case}\, 2v=4:X, \mbox{ and } \in V \setminus X, \\ & \operatorname{We know}\, \delta(s,u)<1/2 \mbox{ and } \delta(s,u)>1/2, \\ & \operatorname{We know}\, \delta(s,u)<\delta(s,u)>\delta(s,u)>\delta(s,u)>s_s, \\ & e=(u,v) \mbox{ will be in the cut } C1 \delta(\delta,u)<2, \\ & \operatorname{We}(e<C)=P(U(e)\, \delta(\delta,u), 1/2))\leq \frac{1-\delta(s,u)}{2}\leq 2(\frac{1}{2}-\delta(s,u))\leq 2(\delta(s,u)-\delta(s,u))\leq 2(\delta(s,u)-\delta(s,u))\leq 2z_s, \end{split}$$

Note: If $u \in X_i$ and $v \in X_j$, then part of e lies in $B(s_i, 1/2)$ and part in $B(s_j, 1/2)$. Observe that $(1/2 - \delta(s_i, u)) + (1/2 - \delta(s_j, v)) \le x_e$. $Pr(e \in C) \le 2((1/2 - \delta(s_i, u)) + (1/2 - \delta(s_i, u))) \le 2x_e$.

Observation 4

The expected weight of the edges in the multiway cut is at most $2z^*$, where z^* is the value of the objective function returned by the LP relaxation $(z^* = \sum_{e \in E} w_e x_e)$.

Proof: Let *C* be the collection of edges in the cut with respect to $R \in (0, 1/2)$. We have already seen that for an arbitrary edge $e \in E$, $Pr(e \in C) < 2x_e$.

$$E[cost(C)] = \sum_{e \in E} w_e Pr(e \in C)$$

$$\leq \sum_{e \in E} w_e \times 2x_e$$

$$= 2\sum_{e \in E} w_e x_e$$

$$= 2z^* \square$$

Theorem

Let G = (V, E) be a simple (complete) graph where each edge has a non-negative real weight. Let $T \subset V$ be a set of terminals. We can find a set $C \subseteq E$ with the following properties:

- 1. G C has no path connecting any pair of terminals.
- 2. The total weight of the edges in C is at most 2 times the weight of an optimal multiway cut.
- 3. We can determine ${\it C}$ in polynomial time using the solution of the relaxed LP.

Consider an unweighted star graph with k + 1 vertices. It consists of k-leaves and all of them are connected to a central node. Let the k leaves constitute the set T of terminals.

Cost of Optimal solution = k - 1 (remove any set of k - 1 edges.)

Cost of relaxed LP is k/2 (set cost of each edge to 1/2).

Approximation Factor $=\frac{k-1}{\frac{k}{2}}=2(1-\frac{1}{k})$

Using this approach, we can't do better in the worst case (termed as the integrality gap).

Remark: A different LP relaxation yields a $\frac{3}{2}$ -approximation.

Multicuts in Graphs

Input: A (complete) graph G = (V, E) with non-negative weights on edges and a set of *k*-vertex pairs $(s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k)$.

Output: A set of edges $C \subseteq E$ of minimum total weight so that $G \setminus C$ has no path between s_i and t_i for i = 1, ..., k.

Edges in the Cut

Let C be a multiway cut that separates every pair $(s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k)$. Define an indicator variable x_e for each edge e as follows:

$$x_e = \begin{cases} 1, \text{ if } e \in C, \\ 0, \text{ otherwise} \end{cases}$$

The assignment of x_e values to each edge satisfies:

- 1. Cost of Multicut equals $\sum_{e \in E} x_e w_e$.
- 2. For any pair (s_i, t_i) , length of any path between them is ≥ 1 , where the length of an edge e is its x_e value.
- 3. For any three distinct vertices $u, v, w, x_{uw} + x_{wv} \ge x_{uv}$.

Linear Programming Formulation for MultiCuts

Problem: Given a (complete) graph G = (V, E), where edges have non-negative weights $e : E \to \Re^+$, and k pairs $(s_1, t_1), (s_2, t_2), \dots, (s_k, t_k)$, find the cut of minimum total weight that separates vertices in each pair.

(Integer) Metric LP Formulation

$$\min\sum_{e\in E} w_e x_e$$

Subject to:

- 1. Membership in the Cut: For each edge $e \in E, x_e \in \{0, 1\}$
- 2. Cut Constraint: For every pair $(s_i, t_i), x_{s_i t_i} \ge 1$.
- 3. Triangle inequality: For any three distinct vertices u, v, w, $x_{uw} + x_{wv} \ge x_{uv}$.

Relaxed LP

Replace the constraint $x_e \in \{0, 1\}$ by $0 \le x_e \le 1$.

Initialize:

- 1. Choose an $R \in (0, 1/2)$, uniformly at random. Initialize the cut $C \leftarrow \emptyset$.
- 2. Define k blocks $X_1 = \ldots = X_k = \emptyset$
- 3. Unmark all the vertices in G.

Main Steps:

Step 1:	Compute a random permutation of vertices s_1, s_2, \ldots, s_k . WLOG, assume the ordering is s_1, s_2, \ldots, s_k .
Step 2:	Let $B_i(s_i, R)$ be the ball consisting of all the vertices within distance R of s_i . For each s_i in the order of permutation do: For each unmarked vertex $v \in B(s_i, R)$, mark v and place it in the block X_i .
Step 2:	For each edge $e = (u, v) \in E$, place it in the cut C if $u \in X_{\alpha}$ and $v \notin X_{\alpha}$ for some $\alpha \neq \beta$.
Stop 2	Poture C

Step 3: Return C.

Observations

Observation 1

$$X_i = B(s_i, R) \setminus \bigcup_{j=1}^{i-1} B(s_j, R).$$

Observation 2

For each pair $s_i, t_i, i = 1, ..., k$, the following holds:

- 1. $t_i \notin X_i$
- 2. if $s_i \in X_j$ then $t_i \notin X_j$.

Proof: Since R < 1/2 and $x_{s_i t_i} \ge 1$ (by LP), $t_i \notin B(s_i, R)$. Since, $X_i \subseteq B(s_i, R) \implies t_i \notin X_i$

If $s_i \in X_j$. The set X_j is defined by $s_j \implies \delta(s_j, s_i) < R < \frac{1}{2}$. All vertices in X_j are within distance < R of s_j . By triangle inequality, any vertex in X_j is within distance < 2R < 1 from s_i . Since $\delta(s_i, t_i) \ge 1$, we have $t_i \notin X_j$. \Box

Estimating Probability of $e \in C$

Claim

 $Pr(e \in C) \leq 2H_k x_e$, where H_k is the *k*-th Harmonic number, and it equals $H_k = \sum_{i=1}^k \frac{1}{i} \approx \ln k.$

Given the Claim, it is easy to see that the expected cost of the cut C will be within a factor of $O(\log k)$ of an optimal cut that separates k terminal pairs.

$$E[cost(C)] = E\left[\sum_{e \in C} w(e)\right]$$
$$= \sum_{e \in E} w(e)Pr(e \in C) \le \sum_{e \in E} 2H_k w_e x_e = 2H_k z^*$$

Theorem

Multicuts in a graph can be approximated within a factor of $O(\log k)$ in polynomial time that separates *k*- terminal pairs.

Proof of Claim

Claim

 $Pr(e \in C) \leq 2H_k x_e$, where H_k is the k-th Harmonic number.

- Let e = (u, v).

- We will consider distance from s_1, \ldots, s_k to e.
- We define the distance from s_i to e = (u, v) as $d(s_i, e) = \min(\delta(s_i, u), \delta(s_i, v)).$

- WLOG, assume that the order of vertices according to increasing distance from e be s_1, s_2, \ldots, s_k .

- In the random ordering of vertices in s_1, \ldots, s_k , consider when an end point u or v of e gets marked for the first time. Say it is u, and it gets marked by s_i .

- $u \in X_i$ and assume $\delta(s_i, u) \leq \delta(s_i, v)$.
- We have two cases (a) $v \in X_i$, (b) $v \notin X_i$.

Case (a): $v \in X_i$, i.e. v is also marked by s_i . Since both the ends of the edge e = (uv) are in $X_i \implies e \notin C$.

Case (b): $v \notin X_i$. In this case $e \in C$, and we say s_i cuts e. We want to estimate $Pr(s_i \text{ cuts } e)$. Observe that s_i cuts e because of the following:

- 1. s_i marked u but not v.
- **2.** $d(s_1, e) \le d(s_2, e) \le \dots \le d(s_k, e).$
- 3. Among all the vertices $\{s_1, \ldots, s_k\}$, s_i is the first vertex that marked any of the end-points of e.
- 4. In the random order, none of the vertices that have smaller distance to e than s_i appeared. Otherwise, s_i won't be the first vertex marking an end of e.

An Illustration

Proof Sketch of Claim (contd.)

- What is the probability that s_i comes before s₁,..., s_{i-1} in a random permutation? Answer: ¹/_i.
- 2. What is the probability that s_i cuts e, given that s_i comes before s_1, \ldots, s_{i-1} ? Answer: The radius $R \in (0, 1/2)$ should fall in the range $\delta(s_i, u) < R < \delta(s_i, v)$. Thus, the probability is $\leq \frac{\delta(s_i, v) - \delta(s_i, u)}{1/2} \leq \frac{x_e}{1/2} = 2x_e$.
- What is the probability that s_i cuts e? Answer: ¹/_i2x_e.
- 4. What is the probability that e is cut by any of s_1, \ldots, s_k ? Answer: $\leq \sum_{i=1}^k Pr(s_i \text{ cuts } e) = \sum_{i=1}^k \frac{1}{i} 2x_e = 2H_k x_e$.

References

References

- Garg, Vazirani and Yannakakis, Multiway cuts in node weighted graphs, J. Algorithms 50(1): 49–61, 2004.
- 2. Garg, Vazirani and Yannakakis, Primal-dual approximation algorithms for integral flow and multicut in trees, Algorithmica 18(1): 3-20, 1997.
- 3. Calinescu, Karloff and Rabani, Approximation algorithms for the 0-extension problem, ACM-SIAM SODA 2001.
- 4. Fakcharoenphol, Rao and Talwar, A tight bound on approximating arbitrary metrics by tree metrics, JCSS 69(3): 485–497, 2004.
- 5. Williamson and Shmoys, The design of approximation algorithms, Cambridge University Press, 2011.
- 6. Several lecture notes (Anupam Gupta, Dinitz, Ravi).