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Introduction



Clustering Problem

Input: A set X = {x1, . . . , xn} of n objects. For every pair xi, xj ∈ X, we
have the distance d(xi, xj) ≥ 0 such that d(xi, xi) = 0 and
d(xi, xj) = d(xj , xi).

Problem: Divide objects in X into k non-empty groups such that the gap
between the groups is as large as possible. Distance between two groups is
defined as the smallest distance between pair of points, where in the pair
points belong to different groups.
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Solution

1. Define a complete graph G = (V = X,E), where each edge e = (xi, xj)

has a weight d(xi, xj).

2. Construct a minimum spanning tree T of G

3. Delete k − 1 most expensive edges from T

4. Output the resulting k-connected components C1, . . . , Ck

Claim
The components C1, . . . , Ck constitute a k-clustering of X that maximizes
the gap.
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K-Means Clustering Problem

Input: A set X = {x1, . . . , xn} of n-points in Rd. An integer 0 < k ≤ n.

Problem: Partition X into k non-empty clusters C1, . . . , Ck. Points within a
cluster should be close to each other compared to points outside the cluster.
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Potential Function

Let C1, . . . , Ck be a k-clustering of X with centers C = {c1, . . . , ck}, where
ci ∈ Rd.

Define the potential function Φ(C) =
∑
x∈X

min
c∈C

d(x, c)2 =
∑
x∈X

min
c∈C
||x− c||2

Φ(C)= Sum of the squared distance between each point x in X to its nearest
center in C

Problem:
Given X and k, find k-centers C such that the corresponding clustering
C1, . . . , Ck minimizes Φ(C)
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Llyod’s Heuristic

1. Select Initial Centers: Arbitrary choose k-centers and initialize
C = {c1, . . . , ck}

2. Partition X: Compute sets C1, . . . , Ck with respect to centers in C.
Point x ∈ X is assigned to the cluster Ci if x’s nearest center in C is ci.

3. Recompute Centers: For each i ∈ {1, . . . , k}, set ci (the new cluster
center) to be the center of the mass of points in Ci

4. Repeat Steps 2 & 3 till C no longer changes
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An illustration of a Phase of Llyod’s Algorithm
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Observations

Let Φ(C∗) be the potential of an optimal clustering and let Φ(C) be the
potential of the clustering returned by Llyod’s heuristic.

δ

∆ ∆

c1

c2

Competitive Ratio

Competitive ratio of Llyod’s heuristic is unbounded, i.e. Φ(C)
Φ(C∗) →∞

8



Observations

Decrease in Potential
Each execution of Steps 2 & 3 decrease the value of the potential function.

Proof: We will use the following Lemma.

Lemma 1
Consider a set of points S. Let m∗ denote the center of mass of S. Let z be
an arbitrary point. Define ∆(S, z) =

∑
x∈S

d(x, z)2. Then

∆(S, z) = ∆(S,m∗) + |S|d(m∗, z)2

Corollary 1
If S is a single cluster with initial center z, then moving the cluster center to
m∗ reduces the potential as ∆(S, z)−∆(S,m∗) = |S|d(m∗, z)2 ≥ 0
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Proof of Lemma

Lemma 1

∆(S, z) = ∆(S,m∗) + |S|d(m∗, z)2, where m∗ is center of mass of S and z

is an arbitrary point

Proof: Assume we are in 2-dimensions. Let z = (zx, zy) and
S = {p1, . . . , pn}, where pi = (xi, yi).

1. m∗ =

(∑
i

xi

n
,

∑
i

yi

n

)
2. ∆(S, z) =

∑
p∈S

d(p, z)2 =
∑

p=(xi,yi)∈S

(
(xi − zx)2 + (yi − zy)2

)
3. ∆(S,m∗) =

∑
p∈S

d(p,m∗)2 =
∑
i

(
xi −

∑
xi
n

)2

+
∑
i

(
yi −

∑
yi

n

)2

4. ∆(S, z)−∆(S,m∗)

= nz2
x + nz2

y − 2zx
∑

xi − 2zy
∑

yi + n
(∑

xi
n

)2

+ n
(∑

yi
n

)2

= n

[
z2
x + z2

y − 2zx
∑

xi
n
− 2zy

∑
yi

n
+
(∑

xi
n

)2

+
(∑

yi
n

)2
]

= |S|d(m∗, z)2

2
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How to choose initial centers?

Question: How to choose initial centers so that we are guaranteed to have
some bounded competitive ratio with respect to optimum?
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k-means++ Algorithm

Let D(x)= Shortest distance from x to the nearest center among the current
set of centers.

k + + Means Algorithm:

Step 1: Choose an initial cluster center c1 uniformly at random from
X.

Step 2: (Randomization Step) Choose the next center ci by
selecting a point x ∈ X with probability D(x)2∑

y∈X
D(y)2

Step 3: Repeat Step 2 till k centers are chosen

Step 4: Execute Llyod’s Heuristic by choosing {c1, . . . , ck} as the
initial centers
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Observations

1. In the Randomization Step, the points of X that are farther from the
currently chosen centers have a higher chance of being selected.

2. The algorithm is 8(ln k + 2)-competitive. Let the k-centers returned by
k-means++ algorithm be C. Then, E[Φ(C)] ≤ 8(ln k + 2)Φ(C∗).

3. Claim holds for the clustering obtained after Step 3. Step 4 may further
improve.

4. Proof is not easy. Consider clusters of an optimal solution C∗. The
authors show
- The algorithm is 2-competitive w.r.t. the points in the optimal cluster,
say A, from where the first center c1 is chosen by the algorithm
- The algorithm is 8-competitive in all those clusters of optimal from
which the algorithm chooses a center.
- If C doesn’t have centers from some of the clusters of the optimal, then
the algorithm is 8(ln k + 2)-competitive.
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Useful Notations

1. Let C be the clustering computed by the k-means++ algorithm

2. Let C∗ be an optimal clustering

3. d(x, c) = ||x− c|| is the Euclidean distance between points x and c

4. Let D(x) = Shortest distance from x to the nearest center in C (or C∗).

5. Φ(C) = ΦC(X) refers to potential with respect to the point set X.
Formally, Φ(C) =

∑
x∈X

min
c∈C

d(x, c)2 =
∑
x∈X

D(x)2

I.e. Φ(C)= Sum of the squared distance between each point in X to its
nearest center in C

6. For a subset A ⊆ X, define ΦC(A) =
∑
x∈A

min
c∈C

d(x, c)2 =
∑
x∈A

D(x)2.
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1st Center from an Optimal Cluster

Claim 1
Let A be an arbitrary cluster in optimal C∗. Let C be the clustering with
exactly one center that is chosen from A uniformly at random. Then,
E[ΦC(A)] = 2ΦC∗(A).

Proof: By definition of expected value, E[ΦC(A)] =
∑

a0∈A

1
|A|

∑
a∈A
||a− a0||2

From Corollary 1, in C∗, cluster center of A will be its center of mass, say m∗.

E[ΦC(A)] =
1

|A|
∑
a0∈A

(∑
a∈A

||a−m∗||2 + |A|||a0 −m∗||2
)

(By Lemma 1)

= 2
∑
a∈A

||a−m∗||2

= 2ΦC∗(A)

2
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Other Centers from Optimal Clusters

Claim 2
Let A be an arbitrary cluster in optimal C∗. Let C be an arbitrary clustering.
Suppose the next center to C in the k-means++ algorithm is added from A,
E[ΦC(A)] ≤ 8ΦC∗(A).

Proof Sketch: By triangle inequality we have for all a and a0,
D(a0) ≤ D(a) + ||a− a0||.

Note that for reals x and y, 1
2
(x + y)2 ≤ x2 + y2

Thus, we have 1
2
(D(a0))2 ≤ 1

2
(D(a0) + ||a− a0||)2 ≤ D(a)2 + ||a− a0||2

Equivalently, D(a0)2 ≤ 2D(a)2 + 2||a− a0||2

Summing over all elements of A, we have∑
a∈A

D(a0)2 ≤
∑
a∈A

(
2D(a)2 + 2||a− a0||2

)
Or, D(a0)2 ≤ 2

|A|
∑
a∈A

D(a)2 + 2
|A|

∑
a∈A

(a− a0)2
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Other Centers from Optimal Clusters (contd.)

Probability of choosing a0 ∈ A as a center = D(a0)2∑
a∈A

D(a)2

E[ΦC(A)] =
∑

a0∈A

D(a0)2∑
a∈A

D(a)2

∑
a∈A

min(D(a), (a− a0))2

Substituting the expression for D(a0)2 in E[ΦC(A)] we obtain:

E[ΦC(A)] ≤ 2
|A|

∑
a0∈A

∑
a∈A

D(a)2∑
a∈A

D(a)2

∑
a∈A

min(D(a), (a− a0))2 +

2
|A|

∑
a0∈A

∑
a∈A

(a−a0)2∑
a∈A

D(a)2

∑
a∈A

min(D(a), (a− a0))2

Substitute for min(D(a), (a− a0))2 ≤ (a− a0)2 in 1st part and
min(D(a), (a− a0))2 ≤ D(a)2 in 2nd part and we obtain:

E[ΦC(A)] ≤ 4
|A|

∑
a0∈A

∑
a∈A

(a− a0)2 = 8ΦC∗(A) (By Claim 1).

2
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Centers Not from Optimal Clusters

Claim 3
Let C be an arbitrary clustering. Choose u > 0 uncovered clusters from C∗.
Let Xu be the points in these clusters and define Xc = X −Xu. Assume
that the algorithm adds t ≤ u random centers to C. Let C′ be the resulting
clustering and Φ′ be its potential. The following inequality holds
E[Φ′] ≤ (Φ(Xc) + 8Φ∗(Xu)) (1 + Ht) + u−t

u
Φ(Xu).

Note that Ht =
t∑

i=1

1
i
≈ ln t.

Proof Idea: Please see the paper by Arthur and Vassilvitskii, k-means++, 8th
ACM-SIAM Symposium on Discrete algorithms, 2007 for details.

Proof is based on induction on values of (t, u). It is shown that if it holds for
(t− 1, u) and (t− 1, u− 1) then it also holds for (u, t).
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Base Cases - Centers Not From Optimal Clusters (contd.)

Base Case 1: u > 0 and t = 0: Note that 1 + H0 = 1 and u−t
u

= 1. Since
there is no change in potential between C and C′ (as no additional center is
chosen), we can express

E[Φ′] = Φ = Φ(Xc) + Φ(Xu) ≤ Φ(Xc) + Φ(Xu) + 8Φ∗(Xu) =

(Φ(Xc) + 8Φ∗(Xu))(1 + H0) + 1 · Φ(Xu).

Base Case 2: u = t = 1. We may choose the new center (since t = 1) either
from an uncovered cluster (as u = 1) with probability Φ(Xu)

Φ
or from a covered

cluster with probability Φ(Xc)
Φ

.

If we choose from Xu, by Claim 2, we have E[Φ′] ≤ Φ(Xc) + 8Φ∗(Xu) (Note
that Φ′(Xc) ≤ Φ(Xc))

If we choose from Xc, Φ′ ≤ Φ as we can only improve the potential.

Therefore, we have

E[Φ′] ≤ Φ(Xu)

Φ
(Φ(Xc) + 8Φ∗(Xu)) +

Φ(Xc)

Φ
Φ

≤ 2Φ(Xc) + 8Φ∗(Xu) ≤ (Φ(Xc) + 8Φ∗(Xu)) (2)

= (Φ(Xc) + 8Φ∗(Xu)) (1 + H1) + 0 · Φ(Xu) 19



Inductive Proof

Two Cases: First center is chosen either from a covered or an uncovered
cluster.

Case 1: From Covered Cluster
t reduces by 1 and probability of this case is Φ(Xc)

Φ
. By I.H, we have

E[Φ′] ≤ Φ(Xc)
Φ

(
(Φ(Xc) + 8Φ∗(Xu))(1 + Ht−1) + u−t+1

u
Φ(Xu)

)
Case 2: From UnCovered Cluster, say A

A becomes covered, and both t and u reduce by 1. Probability of this case is
Φ(A)

Φ
, and lets say probability of choosing an element a ∈ A is pa. We have

E[Φ′] ≤

Φ(A)
Φ

∑
a∈A

pa

(
(Φ(Xc) + Φ({a}) + 8Φ∗(Xu) − 8Φ∗(A))(1 + Ht−1) + u−t

u−1
(Φ(Xu) − Φ(A))

)

Summing over all uncovered clusters, we obtain

E[Φ′] ≤ Φ(Xu)
Φ

(
(Φ(Xc) + 8Φ∗(Xu)) (1 + Ht−1) + u−t

u
Φ(Xu)

)
Combining both cases we have

E[Φ′] ≤ (Φ(Xc) + 8Φ∗(Xu)) (1 + Ht−1 + 1
u

) + u−t
u

Φ(Xu),
and the claim follows as 1

u
≤ 1

t
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Main Result

Theorem
Let the k-centers returned by k-means++ algorithm be C. Then,
E[Φ(C)] ≤ 8(ln k + 2)Φ(C∗), i.e. the algorithm is 8(ln k + 2)-competitive.

Proof: Let A be the cluster of C∗ from where the first center was chosen by
k-means++ algorithm.

Now set t = u = k − 1 and use Claim 3.

We have Xc = A, and Xu = X −A. We obtain

E[Φ(C)] ≤ (Φ(A) + 8ΦC∗(Xu)) (1 + Ht) +
u− t

u
Φ(Xu)

= (Φ(A) + 8ΦC∗(X)− 8ΦC∗(A)) (1 + Hk−1) (As X = Xc ∪Xu)

≤ 8(1 + Hk−1)ΦC∗(X) (By Claim 1)

≤ 8(ln k + 2)Φ(C∗) (as Hk−1 ≤ 1 + ln k)

2
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Summary

Implications:

If the centers in k-means++ algorithm are chosen from each cluster of C∗,
=⇒ Algorithm is 8-competitive.

What if the algorithm doesn’t choose centers from some of clusters of C∗?

- This part introduces 8(ln k + 2)-factor in the analysis

Theorem (Arthur and Vassilvitskii 2007)
The k-means++ algorithm is 8(ln k + 2)-competitive
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