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Problem Statement



Techniques for Designing Approximation Algorithms

• Greedy

• Random Permutation

• Local Search

• Linear Programming Relaxation

• . . .
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Local Search - Technique for Designing Approximation Algorithms

An alternate to greedy algorithms for combinatorial optimization problems.

Approach:

• Find a feasible solution
• Keep swapping a constant number of objects from the current (local)

solution to improve the objective function while maintaining the feasibility
• Stop when no more local improvements can be made
• Output the local solution

Analysis:
• Termination
• Quality of the resulting solution

Sample Problems:
1. Single Swaps:

- 2-approximation algorithm for max cuts in graphs.
- 5-approximation algorithm for metric k-median problem.

2. Multiple Swaps:
- (1 + ε)-approximation algorithm for geometric hitting set.
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Max-Cut Problem

Max-Cut Problem:
Input: An undirected graph G = (V,E).
Output: Find a subset S ⊂ V such that the number of edges between S and
S̄ = V \ S is maximized. The subset S maximizing the number of edges
between S and S̄ is called the Max-Cut of G.

Weighted Max-Cut:
Input: An undirected graph G = (V,E), where each edge has a positive
integer weight.
Output: Find a subset S ⊂ V such that the sum total of the weights on the
edges between S and S̄ = V \ S is maximized. The subset S maximizing the
total weight of edges between S and S̄ is called the Weighted Max-Cut of G.
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Max-Cut Problem

Input: An undirected graph G = (V,E).
Output: Find a subset S ⊂ V such that the number of edges between S and
S̄ = V \ S is maximized. Let cut(S, S̄) denote the number of edges between
S and S̄.

A Local Improvement Algorithm

1. Pick any vertex v ∈ V and set S ← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that
cut(S ∪ {v}, S̄ \ {v}) > cut(S, S̄), set S ← S ∪ {v} and S̄ ← S̄ \ {v}.

3. If ∃v ∈ S such that
cut(S \ {v}, S̄ ∪ {v}) > cut(S, S̄), set S ← S \ {v} and S̄ ← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the size of the cut doesn’t increases.

5. Report S, S̄, cut(S, S̄).
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Analysis of the Local Improvement Algorithm

1. Pick any vertex v ∈ V and set S ← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that
cut(S ∪ {v}, S̄ \ {v}) > cut(S, S̄), set S ← S ∪ {v} and S̄ ← S̄ \ {v}.

3. If ∃v ∈ S such that
cut(S \ {v}, S̄ ∪ {v}) > cut(S, S̄), set S ← S \ {v} and S̄ ← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the size of the cut doesn’t increases.

5. Report S, S̄, cut(S, S̄).

Termination
The algorithm terminates in O(|E|) steps.

Proof: In each iteration of Steps 2 or 3, the size of the cut increases by at
least 1. Since, the max-cut size is at most |E|, the algorithm terminates in
O(|E|) iterations. 2
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Analysis of the Local Improvement Algorithm

Size of Cut

The cut computed by the local improvement algorithm has ≥ |E|
2

edges.

Proof: Let (S, S̄) be the cut computed by the algorithm.
Consider any vertex v ∈ S. Let v has dv neighbors. Using the local-optimality
condition, at least dv

2
neighbors of v are in S̄ (otherwise, we can improve the

solution).
The same argument applies for any vertex v ∈ S̄. Thus,

cut(S, S̄) =
1

2

∑
v∈V

v′s edges crossing the cut

≥ 1

2

∑
v∈V

dv
2

=
1

2

2|E|
2

=
|E|
2

2
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Local Improvement Algorithm

Theorem
The local improvement algorithm is a 2-approximation algorithm for the
Max-Cut problem. The algorithm runs in polynomial time.

Consider the Weighted Max-Cut Problem

Input: An undirected graph G = (V,E), where each edge has a positive
integer weight.
Output: Find a subset S ⊂ V such that the sum total of the weights on the
edges between S and S̄ = V \ S is maximized.

Question: Can we use the local improvement algorithm to find an approxima-
tion for the weighted max-cut?
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Weighted Max-Cut Problem

For each edge e ∈ E, let we be its positive integer weight.
For a subset S ⊂ V , define the weight of cut(S, S̄) as
w(S, S̄) =

∑
e=uv∈E,u∈S,v∈S̄

we.

Local Improvement Algorithm (with weights):

1. Pick any vertex v ∈ V and set S ← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that
w(S ∪ {v}, S̄ \ {v}) > w(S, S̄), set S ← S ∪ {v} and S̄ ← S̄ \ {v}.

3. If ∃v ∈ S such that
w(S \ {v}, S̄ ∪ {v}) > w(S, S̄), set S ← S \ {v} and S̄ ← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the weight of the cut stops increasing.

5. Report S, S̄, w(S, S̄).
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Analysis

Let W =
∑
e∈E

we.

• Termination: In each iteration, w(S, S̄) increases by at least one unit, as
all weights are integers.
=⇒ Algorithm terminates in at most O(W ) steps.

• Approximation factor - Is it true that for each vertex v ∈ S,∑
e=uv∈E,u∈S̄

we ≥ 1
2

∑
e=vw∈E

we?

• Is the running time polynomial in input parameters?
What if we double the weight of an edge?
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Modified Local Improvement Algorithm

Let ε > 0 be a parameter, and let n = |V |.

1. Pick the vertex v ∈ V that has the maximum sum total of the weights of
edges incident to it. Set S ← {v} and S̄ = V \ S.

2. If ∃v ∈ S̄ such that
w(S ∪ {v}, S̄ \ {v}) ≥ (1 + ε

n
)w(S, S̄), set S ← S ∪ {v} and S̄ ← S̄ \ {v}.

3. If ∃v ∈ S such that
w(S \ {v}, S̄ ∪ {v}) ≥ (1 + ε

n
)w(S, S̄), set S ← S \ {v} and S̄ ← S̄ ∪ {v}.

4. Repeat Steps 2 and 3 until the weight of the cut stops increasing.

5. Report S, S̄ and w(S, S̄).
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Analysis of Modified Local Improvement Algorithm

We make following observations:

1. Let (S, S̄) be the cut returned by the algorithm.
2. For each vertex v ∈ S, by local optimality, we have

w(S, S̄) ≥ w(S \ {v}, S̄ ∪ {v})− ε
n
w(S, S̄)

=⇒ w(v, S̄) ≥ w(v, S)− ε
n
w(S, S̄) (∗)

3. Similarly, for each vertex v ∈ S̄, we have
w(S, S̄) ≥ w(S ∪ {v}, S̄ \ {v})− ε

n
w(S, S̄)

=⇒ w(v, S) ≥ w(v, S̄)− ε
n
w(S, S̄) (∗∗)

4. Compute the sum total of all the inequalities (*) over all the vertices in S:
w(S, S̄) ≥

∑
v∈S

w(v, S)− |S| ε
n
w(S, S̄) = 2

∑
e=uv;u,v∈S

w(e)− |S| ε
n
w(S, S̄)

S S̄

u

v

w(S, S̄)

∑
v∈S

w(v, S)

= 2
∑

e=(uv);u,v∈S
w(e)
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Analysis of Modified Local Improvement Algorithm (contd.)

- Similarly, the sum total of all the inequalities (**) for all the vertices in S̄
w(S, S̄) ≥ 2

∑
e=uv;u,v∈S̄

w(e)− |S̄| ε
n
w(S, S̄)

- Adding the last two inequalities we obtain
2w(S, S̄) ≥ 2

∑
e=uv;u,v∈S

w(e) + 2
∑

e=uv,u,v∈S̄
w(e)− |S| ε

n
w(S, S̄)− |S̄| ε

n
w(S, S̄)

Simplifying,

w(S, S̄) ≥
∑

e=uv;u,v∈S

w(e) +
∑

e=uv;u,v∈S̄

w(e)− ε

2
w(S, S̄)

= (W − w(S, S̄))− ε

2
w(S, S̄)

Thus, w(S, S̄) ≥ W
2+ ε

2
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Analysis of Modified Local Improvement Algorithm (contd.)

Weight of any cut is upper bounded by W , including the weight of an optimal
cut. Thus, we have

Claim

The modified local improvement algorithm is 1
2+ε

approximation algorithm
for the weighted max-cut problem.

Next we analyze the running time.
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Analysis of Modified Local Improvement Algorithm (contd.)

• Assume that the algorithm runs for k iterations and the sets computed by
the algorithm are S0, S1, S2, . . . , Sk.

• Observe that w(Si, S̄i) ≥ (1 + ε
n

)w(Si−1, S̄i−1), for i = 1, . . . , k.
=⇒ w(Sk, S̄k) ≥ (1 + ε

n
)kw(S0, S̄0)

• We know that w(S0, S̄0) ≥ W
n

and W (Sk, S̄k) ≤W .

• Thus, W ≥W (Sk, S̄k) ≥ (1 + ε
n

)kw(S0, S̄0) ≥ (1 + ε
n

)k W
n

=⇒ k ≤ logn
log(1+ ε

n
)

If ε
n
< 1, log(1 + ε

n
) ≥ ε

2n
(i.e., log(1 + x) > x/2 for small values of x).

Thus, k ≤ logn
log(1+ ε

n
)
≤ 2n

ε
logn.

Theorem

A 1
2+ε

approximation of maximum weight cut can be computed in
polynomial time. The running time depends on 1

ε
, |V |, and |E|.

16



k-Median



k-median Problem

Let G = (V,E) be a complete graph on n vertices, where the costs on edges
(d : V × V → <+) satisfy the metric properties:

• ∀u ∈ V : d(u, u) = 0

• ∀u, v ∈ V : d(u, v) = d(v, u)

• ∀u, v, w ∈ V : d(u, v) ≤ d(u,w) + d(w, v)

Definitions:

1. Facilities: Let F ⊂ V such that |F | = k.

2. Distance to nearest facility: d(v, F ) = min
f∈F

d(v, f).

3. cost(F ) =
∑
v∈V

d(v, F )

k-median problem

Given the metric complete graph G = (V,E), find F ⊂ V , |F | = k, such that
cost(F ) is minimum.
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An Example: Euclidean distance among points in plane, k = 5
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Local Search Algorithm for k-median problem

Input: A metric graph G = (V,E) and an integer < 0 < k ≤ |V |
Output: F ⊂ V such that |F | = k.

Step 1 (Initialize) F ← ∅. Select any k vertices from V . Add them to
F as the initial set of k facilities.

Setp 2 (Local improvement step)
While there exists a pair of vertices (u, v), where u ∈ V \ F
and v ∈ F , such that cost(F \ {v} ∪ {u}) < cost(F ),
F ← F \ {v} ∪ {u}.

Step 3 Report F .

Approximation Quality
Let F ∗ be an optimal set of k-facilities for the k-median problem on the
metric graph G. The set F returned by the local search algorithm satisfies
cost(F ) ≤ 5cost(F ∗), i.e., it results in a 5-approximation.
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Swap Pairs

• In Step 2 of the algorithm, if we make a swap (u, v), then the cost(F )

improves, i.e., cost(F \ {v} ∪ {u}) < cost(F ).

• After the algorithm terminates, there doesn’t exist any improving swap
pairs. I.e., for any pair of vertices (u, v), where u ∈ V \ F and v ∈ F ,
cost(F \ {v} ∪ {u}) ≥ cost(F ).

• To show cost(F ) ≤ 5cost(F ∗), we will select a set of specific
non-improving swap pairs using the vertices in an optimal solution F ∗

and the solution F returned by the algorithm.
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Finding a Select Set of Non-improving Swap Pairs

Let F ∗ = (f∗1 , . . . , f
∗
k ) ⊂ V be an optimal solution.

Let F = (f1, . . . , fk) ⊂ V is the solution returned by the algorithm.

Define a mapping η : F ∗ → F , that maps each facility (vertex) in F ∗ to the
nearest facility in F .

We partition F = F0 ∪ F1 ∪ F≥2 based on the in-degree of function η:
F0 = {f ∈ F | no facilities in F ∗ maps to f}
F1 = {f ∈ F | exactly one facility in F ∗ maps to f}
F≥2 = {f ∈ F | at least two facilities in F ∗ maps to f}

Define the set S ⊂ F ∗ × F consisting of the following non-improving pairs of
facilities:

1. All pairs corresponding to F1 are in S. I.e. for each pair (f∗, r), where
r ∈ F and f∗ ∈ F ∗ and η−1(r) = f∗, (f∗, r) ∈ S.

2. For the remaining facilities in F ∗, pair them up, and assign each pair to a
unique facility in F0.
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Illustration of Set S

F ∗

F
F0F1 F2 F2

F ∗

F ∗

F
F0F1 F2 F2

η

Pairs in

S
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An Observation on |F0|

Are there enough facilities in F0 so that the pairs of the remaining facilities in
F ∗ can be assigned to the unique facilities in F0?

Size of F0

|F0| ≥ |F |−|F1|
2

Proof: Use the following remarks to arrive at a proof
- k = |F | = |F ∗|
- |F | = |F0|+ |F1|+ |F≥2|
- The number of remaining facilities in F ∗ are k − |F1| = |F | − |F1|.
- Nearest neighbors of the remaining facilities in F ∗ are among F≥2.
- Each facility in F≥2 is near neighbor of at least two facilities of F ∗.
2
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Bounding cost(F ) - Useful Notations

• Functions φ : V → F and φ∗ : V → F ∗ maps vertices to the nearest
facilities in F and F ∗, respectively. If φ(v) = r, than the nearest vertex of
v in F is r.

• For any vertex v ∈ V , define the cost to the nearest facility in F ∗ by
Ov = d(v, F ∗) = d(v, φ∗(v)). Similarly, define Av = d(v, F ) = d(v, φ(v)).

• cost(F ∗) =
∑
v∈V

Ov and cost(F ) =
∑
v∈V

Av

• Define neighborhoods of facilities as the vertices that they serve. For
each facility f∗ ∈ F ∗, we have N∗(f∗) = {v ∈ V |φ∗(v) = f∗}. Similarly,
for r ∈ F , N(r) = {v ∈ V |φ(r) = f}.

• If F ∗ = (f∗1 , . . . , f
∗
k ), then N∗(f∗1 ), . . . , N∗(f∗k ) is a partition of V .

Similarly, N(r1), . . . , N(rk) is partition of V with respect to facilities in
F = {r1, . . . , rk}.
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Bounding cost(F )

Main Claim
Consider a (non-improving) swap pair (f∗, r) ∈ S. Suppose we bring in the
facility f∗ ∈ F ∗ and remove r from F , i.e., F = F ∪ {f∗} \ {r}. The cost of
the resulting k-median solution satisfies∑

v∈N∗(f∗)

(Ov −Av) +
∑

v∈N(r)

2Ov ≥ cost(F ∪ {f∗} \ {r})− cost(F ) (1)

r f ∗

Proof comes later.
First we show that by summing Equation 1 over all the swap pairs in S, we
have cost(F ) ≤ 5cost(F ∗) as follows.
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5-approximation Bound From the Main Claim

Theorem
Suppose for each swap pair (f∗, r) ∈ S we have∑
v∈N∗(f∗)

(Ov −Av) +
∑

v∈N(r)

2Ov ≥ cost(F ∪ {f∗} \ {r})− cost(F ), than

cost(F ) ≤ 5cost(F ∗).

Proof:

1. Each f∗ ∈ F ∗ appears exactly once in S, and
⋃

f∗∈F∗
N∗(f∗) partitions

V =⇒
∑

(f∗,r)∈S

∑
v∈N∗(f∗)

(Ov −Av) ≤ cost(F ∗)− cost(F ).

2. Each r ∈ F appears at most twice in S. Thus,∑
(f∗,r)∈S

∑
v∈N(r)

Ov ≤ 2cost(F ∗).

3. Since each pair in S is non-improving we have
cost(F ∪ {f∗} \ {r})− cost(F ) ≥ 0

4. Summing for all pairs (f∗, r) ∈ S the inequality∑
v∈N∗(f∗)

(Ov −Av) +
∑

v∈N(r)

2Ov ≥ cost(F ∪ {f∗} \ {r})− cost(F ), and

apply 1-3, we obtain cost(F ∗)− cost(F ) + 2 ∗ 2cost(F ∗) ≥ 0. Thus,
cost(F ) ≤ 5cost(F ∗) 2 26



Proof of Main Claim

For a swap pair (f∗, r) ∈ S we want to show∑
v∈N∗(f∗)

(Ov −Av) +
∑

v∈N(r)

2Ov ≥ cost(F ∪ {f∗} \ {r})− cost(F ).

Proof Sketch:

1. Note that we are swapping r by f∗ in F . We are interested to upper
bound cost(F ∪ {f∗} \ {r})− cost(F ).

2. We need to reassign facilities to some of the vertices because of this
swap. For example, all vertices in N(r) need to find a facility in
F ∪ {f∗} \ {r}.

3. We will assign each vertex in N∗(f∗) to f∗ in F ∪ {f∗} \ {r}. We will
assign each vertex v ∈ N(r) \N∗(f∗) to η(φ∗(v)). For all the remaining
vertices, the assignment remains the same. This reassignment may not
map each vertex to its nearest facility. This is fine as we are only
interested to upper bound cost(F ∪ {f∗} \ {r})− cost(F ).
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Proof of Main Claim (contd.)

4. For facilities in F ∪ {f∗} \ {r}, assign each vertex in N∗(f∗) to f∗. The
expression

∑
v∈N∗(f∗)

(Ov −Av) accounts for the difference in the costs,

as we save Av from their costs but they costs us Ov.

5. Note that there may be a vertex v ∈ N∗(f∗) that ideally isn’t served by
f∗ in F ∪ {f∗} \ {r}. The reason is that r′ ∈ F \ {r} may be closer to v
than f∗. Nevertheless we assign v to f∗, since we are trying to find an
upper bound (O(v) ≥ d(v, r′) =⇒ Ov −Av ≥ d(v, r′)−Av).

6. All the vertices in N(r) ∩N∗(f∗) are assigned to f∗ in F ∪ {f∗} \ {r}.
By the similar upper bound argument, even if for a vertex
v ∈ N(r) ∩N∗(f∗) its nearest neighbor in F ∪ {f∗} \ {r} may not be f∗,
but the same upper bound argument holds.

7. How to account for the costs of members in N(r) \N∗(f∗)?
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Proof of Main Claim (contd.)

8. Let v ∈ N(r) \N∗(f∗).

9. Since v isn’t served by f∗ in optimal =⇒ v is served by a facility
f̂∗ ∈ F ∗, i.e., φ∗(v) = f̂∗.

10. Either f̂∗ ∈ F or f̂∗ 6∈ F .

11. If f̂∗ ∈ F : then we assign v to f̂∗.

12. If f̂∗ 6∈ F , consider r̂ = η(f̂∗), i.e. nearest neighbor of f̂∗ in F .
(Note: r̂ 6= r. If it is, than r ∈ F1 ∪ F≥2, we wouldn’t have assigned f∗ to
r.) Assign v to r̂.

f ∗

r

f̂ ∗

r̂ = η(f̂ ∗)

v

∈ S

φ(v)

φ∗(v)
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Proof of Main Claim (contd.)

f ∗

r

f̂ ∗

r̂ = η(f̂ ∗)

v

∈ S

φ(v)

φ∗(v)

By triangle inequality: d(v, r̂) ≤ d(v, f̂∗) + d(f̂∗, r̂).
-Subtracting d(v, r) from both the sides, we get
d(v, r̂)− d(v, r) ≤ d(v, f̂∗) + d(f̂∗, r̂)− d(v, r).
- We know that d(f̂∗, r̂) ≤ d(f̂∗, r) because of nearest neighbor function η.
- Thus, d(v, r̂)− d(v, r) ≤ d(v, f̂∗) + d(f̂∗, r)− d(v, r).
- By triangle inequality, d(f̂∗, r)− d(v, r) ≤ d(v, f̂∗).
- Thus, d(v, r̂)− d(v, r) ≤ d(v, f̂∗) + d(f̂∗, r)− d(v, r) ≤ 2d(v, f̂∗) = 2Ov.
2
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Running Time

Input: A metric graph G = (V,E) and an integer < 0 < k ≤ |V |
Output: F ⊂ V such that |F | = k.

Step 1 (Initialize) F ← ∅. Select any k vertices from V and insert them in F .

Setp 2 (Local improvement step) While there exists a pair of vertices (u, v), where
u ∈ V \ F and v ∈ F , such that cost(F \ {v} ∪ {u}) < cost(F ), set
F ← F \ {v} ∪ {u}.

Step 3 Report F .

Running Time:

1. In each execution of Step 2, the cost improves =⇒ Algorithm
terminates.

2. How many times Step 2 is executed?

3. Assume all d(u, v) values are positive integers and let ∆ =
∑
u,v

d(u, v).

4. Number of times Step 2 is executed ≤ ∆.

5. Modify Step 2: Swap if cost improves by at least a factor of (1− ε
poly(n)

)
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Conclusions

Theorem
Let F ∗ be an optimal set of k-facilities for the k-median problem on the
metric graph G. The set F returned by the local search algorithm satisfies
cost(F ) ≤ (5 + ε)cost(F ∗). Moreover, the algorithm runs in polynomial time.
Run time depends on |V | and 1

ε
.

Improvements: In place of performing a single swap in Step 2, perform t ≥ 1

multi-swaps. A refined analysis shows that cost(F ) ≤ (3 + 2
t
)cost(F ∗).
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Approximating Geometric Hitting Set



Geometric Hitting Set Problem

Input: A set D of disks and a set P of points in plane.
Output: Find a subset S ⊆ P of smallest cardinality that hits all disks in D.

We say a point p ∈ P hits the disk D ∈ D if p ∈ D.
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Local Search Algorithm

k-level Local Search algorithm for finding a hitting set for disks:

Input: A set D of disks and a set P of points in plane. A (large) integer k > 0.
Output: A subset S ⊆ P that hits all disks in D.

1. Initialization: S ← P . Check if S hits all disks. If not, report infeasibility
and stop.

2. Local Improvement Step: Keep replacing any set of k points in S by at
most k − 1 points of P so that points in S hits all disks in D.

3. Return S.

Main Result
Let S∗ ⊆ P be an optimal hitting set for D. The set S returned by the
algorithm satisfies |S| ≤ (1 + c√

k
)|S∗|, for some constant c.

Ingredients: Separators + Planar (Delaunay) Triangulations
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Locality Condition

A bipartite graph for B,R ⊆ P
Let B,R ⊂ P be subset of points of P , and let G = (V = B ∪R,E) be a
bipartite graph such that the following locality condition holds:
For any disk D ∈ D, where B ∩D 6= ∅ and R ∩D 6= ∅, there exist points
b ∈ B ∩D and r ∈ R ∩D such that (b, r) ∈ E.

Delaunay Triangulation on B ∪R
Let G be the planar graph corresponding to the Delaunay triangulation of
B ∪R, where we only keep the edges between a pair of red and blue
points. The graph G satisfies the locality condition.

Proof: By construction, G is bipartite.
If a disk D ∈ D contains points from both B and R, than there is a point
b ∈ B and r ∈ R such that the Delaunay edge br completely lies inside D.
This uses the property that for a Delaunay triangulation, points within an
arbitrary disk forms a connected subgraph. 2
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Illustration of Delaunay Graph G = (B ∪R,E)
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Neighborhoods in G

Neighborhoods
For each vertex v ∈ G = (V,E), let N(v) be all the vertices adjacent to v.
For a subset of vertices W ⊂ V , define N(W ) =

⋃
v∈W

N(v).

Let B = S be the set returned by the local search algorithm, and let R = S∗

be an optimal solution for the hitting set problem. Assume that B ∩R = ∅
(otherwise, we can remove the common points and the disks that they hit).

Note that B hits all disks in D and similarly R hits all disks in D. Consider the
planar bipartite graph G = (B ∪R,E) formed using the Delaunay
triangulation of B ∪R and retain only the red-blue edges.
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Neighborhoods in G = (B ∪R,E)

Claim 1

For any subset B′ ⊂ B, B ∪N(B′) \B′ is a hitting set for D.

Proof:
- Consider any disk D ∈ D.
- Since points in B hits all disks, there is some point in B that hits D.
- If any of the points in B \B′ hits D =⇒ Points in B ∪N(B′) \B′ also hits
D.
- Now, assume only the points in B′ hits the disk D.
- Points in R also hits all disks in D
- Let r ∈ R hits D and let b ∈ B′ hits D.
- Both points b, r ∈ D.
- By the Delaunay property, there is a bichromatic edge in the Delaunay
triangulation that completely lies in D.
=⇒ The neighborhhod set of B′ also includes a red point in R that is in the

disk D.
- Thus, B ∪N(B′) \B′ is a hitting set for D. 2
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Expansion Property

Claim 2 - Expansion Property

For every subset B′ ⊆ B of size ≤ k in the graph G = (B ∪R,E),
|N(B′)| ≥ |B′|, i.e. the size of the neighborhood of B′ is at least |B′|.

Proof:
- The set B is obtained by executing the local search algorithm with
parameter k

=⇒ there doesn’t exist any improving swaps, i.e. no set of k points
(vertices) in B can be replaced by k− 1 points from P to hit all the disks in D.

- By Claim 1, the set B ∪N(B′) \B′ is a hitting set for D.

=⇒ |N(B′)| ≥ |B′|, otherwise the local optimality condition is violated.
2
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Fredrickson’s r-partitioning of Planar Graphs

Let G = (V,E) be a planar graph on n vertices, and let r be a number.
- Fredrickson, using the recursive application of Lipton and Tarjan’s planar
separator theorem, shows a division of planar graph in regions consisting of
interior and boundary vertices.
- Each interior vertex is contained within a region and is adjacent to vertices
within that region.
- Boundary vertices are shared between at least two regions.

Lemma
Let G be a planar graph on n vertices. A r-division divides G in Θ(n/r)

regions, where each region consists of O(r) vertices and O(
√
r) boundary

vertices. A r-division of a planar graph G can be computed in O(n logn)

time.

40



Illustration of r-partitioning

R1

R2 R3

R4

R5

Internal Vertices Boundary Vertices
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Bounding the size of B

Main Claim
Let S ⊂ P be the set of points returned by local search algorithm with
parameter k and let S∗ ⊂ P be an optimal solution for the hitting set
problem for the disks in D by points in P . We define the Delaunay
triangulation on red-blue points where B = S and R = S∗, and construct the
bipartite graph G = (B ∪R,E) by retaining only the edges between red and
blue points. The following holds: |B| ≤ (1 + c√

k
)|R| for some constant c.

Proof:
- Assume n = |B|+ |R|.
- We apply Fredrickson’s r-partitioning on the graph G, where r = k.
- G is divided into Θ(n/k) regions, each region consisting of ≤ k vertices and
O(
√
k) boundary vertices.

- The total number of boundary vertices is O(n/
√
k)

- Let Vi = Bi ∪Ri be the set of vertices in the i-th region in the partitioning.
- Let Binti , B∂i be the interior and boundary blue vertices in Vi
- Let Rinti , R∂i be the interior and boundary red vertices in Vi
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Illustration of Notation

Vi = Bi ∪Ri

Vj = Bj ∪Rj

Bint
i

Bint
iBint

i

Rint
i

B∂
i

R∂
i
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Bounding the size of B (contd.)

- Sum total of boundary vertices among all regions is γn/
√
k, where γ is a

constant from Fredrickson’s r-partitioning. .
- I.e.,

∑
i

(|B∂i |+ |R∂i |) ≤ γn/
√
k.

- Number of interior blue vertices, |Binti |, in any region is at most k.
- By Claim 2 (Expansion Property), we know that |Binti | ≤ |N(Binti )|.

- What are the vertices in N(Binti )?
- N(Binti ) ⊆ Rinti ∪R∂i - Thus we have |Binti | ≤ |Rinti |+ |R∂i |
- Add |B∂i | on both sides and we obtain: |B∂i |+ |Binti | ≤ |Rinti |+ |R∂i |+ |B∂i |

- Summing over all regions we have:∑
i

(
|B∂i |+ |Binti |

)
≤
∑
i

|Rinti |+
∑
i

(
|R∂i |+ |B∂i |

)
(2)

- Note,
∑
i

(
|B∂i |+ |Binti |

)
≥ |B|, |R| ≥

∑
i |R

int
i |, and∑

i

(
|R∂i |+ |B∂i |

)
= γn/

√
k = γ(|B|+ |R|)/

√
k.
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Bounding the size of B (contd.)

We have

|B| ≤
∑
i

(
|B∂i |+ |Binti |

)
≤ |R|+ γ(|B|+ |R|)/

√
k (3)

Let k ≥ 4γ2 and c = 4γ. Note γ/
√
k ≤ 1/2.

|B| ≤

(
1 + γ/

√
k

1− γ/
√
k

)
|R|

= (1 + γ/
√
k)(1 + γ/

√
k + (γ/

√
k)2 + (γ/

√
k)3 + · · · )|R|(

1

1− x = 1 + x+ x2 + · · ·
)

≤ (1 + γ/
√
k)(1 + 2γ/

√
k)|R| (as γ/

√
k ≤ 1/2)

= (1 + 3γ/
√
k + 2(γ/

√
k)2)|R|

= (1 + 4γ/
√
k)|R| (as γ/

√
k ≤ 1/2)

= (1 + c/
√
k)|R| 2
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Summary

• Design a local search algorithm with parameter k.

• Consider the solution B returned by the algorithm and an optimal
solution R.

• Set up a bipartite planar graph G with bipartition B and R.

• Find a k-partitioning of G into Θ(n/k) regions, each region consisting of
at most k vertices, and the boundary composed of O(

√
k) vertices.

• Bound the size of B in terms of the size of R using the neighborhood
relationships of internal blue vertices in each region.

Extensions: Maximization problems (see Aschner et al.), Max Coverage
Problems with Cardinality Constraints (see Chaplick et al.), . . .
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