Locality-Sensitive Hashing

1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Introduction

Similarity of Documents

LSH

Metric Spaces

Sensitive Function Family

AND-OR Family

Fingerprints

References

Introduction

How to find efficiently

- 1. Similar documents among a collection of documents
- 2. Similar web-pages among web-pages
- 3. Similar fingerprints among a database of fingerprints
- 4. Similar sets among a collection of sets
- 5. Similar images from a database of images
- 6. Similar vectors in higher dimensions.

Similarity of Documents

Problem Definition

Input: A collection of web-pages. **Output:** Report near duplicate web-pages.

k-shingles

Any substring of k words that appears in the document.

Text Document = "What is the likely date that the regular classes may resume in Ontario"

2-shingles: What is, is the, the likely, ..., in Ontario

3-shingles: What is the, is the likely, ..., resume in Ontario

In practice: 9-shingles for English Text and 5-shingles for e-mails

Similarity between sets

Text Document $D \rightarrow$ **Set** S

- 1. Form all the k-shingles of D
- 2. S is the collection of all k-shingles of D

Jaccard Similarity

For a pair of sets S and T, the Jaccard Similarity is defined as ${\rm SIM}(S,T)=\frac{|S\cap T|}{|S\cup T|}$

Figure 1: |S| = 8, |T| = 5, $|S \cup T| = 10$, $|S \cap T| = 3$, SIM $(S, T) = \frac{|S \cap T|}{|S \cup T|} = \frac{3}{10}$

Problem: Find Similar Sets

New Problem

Given a constant $0\leq s\leq 1$ and a collection of sets $\mathcal S,$ find the pairs of sets in $\mathcal S$ with Jaccard similarity $\geq s$

 $U = \{$ Cruise, Ski, Resorts, Safari, Stay@Home $\}$

 $S_1 = \{$ Cruise, Safari $\}$ $S_3 = \{$ Ski, Safari, Stay@Home $\}$

 $S_2 = \{ \text{Resorts} \}$ $S_4 = \{ \text{Cruise, Resorts, Safari} \}$

Problem: Given $S = \{S_1, S_2, S_3, S_4\}$ and $s = \frac{1}{2}$, report all pairs that are *s*-similar.

 $SIM(S_1, S_2) = \frac{0}{3} = 0 \qquad SIM(S_2, S_3) = \frac{0}{4} = 0$ $SIM(S_1, S_3) = \frac{1}{4} \qquad SIM(S_2, S_4) = \frac{1}{3}$ $SIM(S_1, S_4) = \frac{2}{3} \qquad SIM(S_3, S_4) = \frac{1}{5}$

Characteristic Matrix Representation of Sets

 $U = \{$ Cruise, Ski, Resorts, Safari, Stay@Home $\}$

 $S = \{S_1, S_2, S_3, S_4\}$, where each $S_i \subseteq U$ e.g. $S_1 = \{$ Cruise, Safari $\}$ and $S_2 = \{$ Resorts $\}$

Characteristic matrix for S:

	S_1	S_2	S_3	S_4
Cruise	1	0	0	1
Ski	0	0	1	0
Resorts	0	1	0	1
Safari	1	0	1	1
Stay@Home	0	0	1	0

Permute Rows of characteristic matrix - π : 01234 \rightarrow 40312

		S_1	S_2	S_3	S_4	π		S_1	S_2	S_3	S_4
0	Cruise	1	0	0	1	$1 \rightarrow 0$	Ski	0	0	1	0
1	Ski	0	0	1	0	$3 \rightarrow 1$	Safari	1	0	1	1
2	Resorts	0	1	0	1	$4 \rightarrow 2$	Stay@Home	0	0	1	0
3	Safari	1	0	1	1	$2 \rightarrow 3$	Resorts	0	1	0	1
4	Stay@Home	0	0	1	0	$0 \rightarrow 4$	Cruise	1	0	0	1

Minhash Signatures for a set S_i w.r.t. π is the **row-number** of first non-zero element in the column corresponding to S_i

 $h(S_1) = 1$ $h(S_2) = 3$ $h(S_3) = 0$ $h(S_4) = 1$

Key Lemma

Lemma

For any two sets S_i and S_j in a collection of sets S where the elements are drawn from the universe U, the probability that the minhash value $h(S_i)$ equals $h(S_j)$ is equal to the Jaccard similarity of S_i and S_j , i.e., $Pr[h(S_i) = h(S_j)] = SIM(S_i, S_j) = \frac{|S_i \cap S_j|}{|S_i \cup S_i|}$.

		S_1	S_2	S_3	S_4
0	Ski	0	0	1	0
1	Safari	1	0	1	1
2	Stay@Home	0	0	1	0
3	Resorts	0	1	0	1
4	Cruise	1	0	0	1

$$Pr[h(S_1) = h(S_4)] = SIM(S_1, S_4) = \frac{|S_1 \cap S_4|}{|S_1 \cup S_4|} = \frac{2}{3}$$

Consider the rows corresponding to the columns of S_i and S_j .

Let x = Number of rows where both the columns have a 1.

Let y = Number of rows where exactly one of the columns has a 1.

S_1	S_4		
0	0		
1	1	\rightarrow	x
0	0		
0	1	\rightarrow	y
1	1	\rightarrow	x

Observe that $|S_i \cap S_j| = x$ and $|S_i \cup S_j| = x + y$.

Note that the rows where both the columns have 0's can't be the minHash signature of S_i or S_j .

Probability that $h(S_i) = h(S_j)$ is same as that the row corresponding to x is the 'first one' as compared to the rows corresponding to y.

Thus,
$$Pr[h(S_i) = h(S_j)] = \frac{x}{x+y} = \frac{|S_i \cap S_j|}{|S_i \cup S_j|} = SIM(S_i, S_j)$$

MinHash Signature matrix for |S| = 11 sets with 12 hash functions

S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}
2	2	1	0	0	1	3	2	5	0	3
1	3	2	0	2	2	1	4	2	1	2
3	0	3	0	4	3	2	0	0	4	2
0	4	3	1	5	3	3	2	3	5	4
2	1	1	0	4	1	2	1	4	2	5
4	2	1	0	5	2	3	2	3	5	4
2	4	3	0	5	3	3	4	4	5	3
0	2	4	1	3	4	3	2	2	2	4
0	2	1	0	5	1	1	1	1	5	1
0	5	1	0	2	1	3	2	1	5	4
1	3	1	0	5	2	3	3	6	3	2
0	5	2	1	5	1	2	2	6	5	4

LSH

Partitioning of a signature matrix into b = 4 bands of r = 3 rows each.

Band	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}
	2	2	1	0	0	1	3	2	5	0	3
1	1	3	2	0	2	2	1	4	2	1	2
	3	0	3	0	4	3	2	0	0	4	2
	0	4	3	1	5	3	3	2	3	5	4
II	2	1	1	0	4	1	2	1	4	2	5
	4	2	1	0	5	2	3	2	3	5	4
	2	4	3	0	5	3	3	4	4	5	3
111	0	2	4	1	3	4	3	2	2	2	4
	0	2	1	0	5	1	1	1	1	5	1
	0	5	1	0	2	1	3	2	1	5	4
IV	1	3	1	0	5	2	3	3	6	3	2
	0	5	2	1	5	1	2	2	6	5	4

Band 3: $\{S_3, S_6, S_{11}\}$ are hashed into the same bucket, and so are $\{S_8, S_9\}$

Lemma

Let s > 0 be the Jaccard similarity of two sets. The probability that the minHash signature matrix agrees in all the rows of at least one of the bands for these two sets is $f(s) = 1 - (1 - s^r)^b$.

Band	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S10	S_{11}
	2	2	1	0	0	1	3	2	5	0	3
1	1	3	2	0	2	2	1	4	2	1	2
	3	0	3	0	4	3	2	0	0	4	2
	0	4	3	1	5	3	3	2	3	5	4
11	2	1	1	0	4	1	2	1	4	2	5
	4	2	1	0	5	2	3	2	3	5	4
	2	4	3	0	5	3	3	4	4	5	3
111	0	2	4	1	3	4	3	2	2	2	4
	0	2	1	0	5	1	1	1	1	5	1
	0	5	1	0	2	1	3	2	1	5	4
IV	1	3	1	0	5	2	3	3	6	3	2
	0	5	2	1	5	1	2	2	6	5	4

Proof

Claim: Pr(signatures agree in all rows of ≥ 1 bands for S_i and S_j with Jaccard Similarity s)= $f(s) = 1 - (1 - s^r)^b$. Answer the following:

- 1. Probability that the signature agrees in a row
- 2. Probability that the signature agrees in all rows of a band
- 3. Probability that the signature doesn't agree in at least one of the rows of a band
- 4. Probability that the signature doesn't agree in any of the bands
- 5. Probability that the signature agrees in at least one of the bands

 $f(s) = 1 - (1 - s^r)^b$ for different values of s, b, and r:

(b, r)	(4, 3)	(16, 4)	(20, 5)	(25, 5)	(100, 10)
$f(s) = 1 - (1 - s^r)^b \searrow$					
s = 0.2	0.0316	0.0252	0.0063	0.0079	0.0000
s = 0.4	0.2324	0.3396	0.1860	0.2268	0.0104
s = 0.5	0.4138	0.6439	0.4700	0.5478	0.0930
s = 0.6	0.6221	0.8914	0.8019	0.8678	0.4547
s = 0.8	0.9432	0.9997	0.9996	0.9999	0.9999
s = 1.0	1.0	1.0	1.0	1.0	1.0
Threshold $t = \left(\frac{1}{b}\right)^{\left(\frac{1}{r}\right)}$	0.6299	0.5	0.5492	0.5253	0.6309

S-curve

16

- 1. For what values of $s,\,f^{\prime\prime}(s)=0?$ $s=(\tfrac{r-1}{br-1})^{\frac{1}{r}}$
- 2. For values of br >> 1, $s \approx \left(\frac{1}{b}\right)^{\frac{1}{r}}$
- 3. Steepest slope occurs at $s \approx (1/b)^{(1/r)}$
- 4. If the Jaccard similarity *s* of the two sets is above the threshold $t = (\frac{1}{b})^{\frac{1}{r}}$, the probability that they will be found potentially similar is very high.
- 5. Consider the entries in the row corresponding to s = 0.8 in the table and observe that most of the values for $f(s = 0.8) \rightarrow 1$ as s > t.

Computational Summary

- Input: Collection of m text documents of size \mathcal{D}
- k-shingles: Size = $k\mathcal{D}$
- Characteristic matrix of size $|U| \times m$, where U is the universe of all possible k-shingles
- Signature matrix of size $n \times m$ using *n*-permutations
- $\lceil \frac{n}{r} \rceil$ bands each consisting of r rows
- Hash maps from bands to buckets
- Output: All pairs of documents that are in the same bucket corresponding to a band
- Check whether the pairs correspond to similar documents!
- With the right choice of threshold $\Pr(\text{the pair is similar}) \rightarrow 1$

How can we apply for other 'similarity' problems? How can we apply for 'nearest neighbor' problems? **Metric Spaces**

Consider a finite set *X*. A *metric* or *distance measure d* on *X* is a function $d: X \times X \rightarrow [0, \infty)$ satisfying the following properties. For all elements $u, v, w \in X$:

- 1. Non-negativity: $d(u, v) \ge 0$.
- 2. Symmetric: d(u, v) = d(v, u).
- 3. Identity: d(u, v) = 0 if and only if u = v.
- 4. Triangle Inequality: $d(u, v) + d(v, w) \ge d(u, w)$.

Examples: Euclidean distance among set of *n*-points in plane.

Let X =Set of n-points in plane.

Euclidean distance between any two points $p_i = (x_i, y_i)$ and $p_j = (x_j, y_j)$ is $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$.

Euclidean Distance Metric

X with the Euclidean distance measure satisfies the metric properties.

- 1. Non-negativity: $d(u, v) \ge 0$.
- 2. Symmetric: d(u, v) = d(v, u).
- 3. Identity: d(u, v) = 0 if and only if u = v.
- 4. Triangle Inequality: $d(u, v) + d(v, w) \ge d(u, w)$.

X =Set of d-dimensional Boolean vectors.

Hamming distance HAM(u, v)= Number of coordinates in which two vectors $u, v \in X$ differ.

Hamming Distance Metric

Hamming distance is a metric over the *d*-dimensional vectors.

- 1. Non-negativity: $HAM(u, v) \ge 0$.
- 2. Symmetric: HAM(u, v) = HAM(v, u).
- 3. Identity: HAM(u, v) = 0 if and only if u = v.
- 4. Triangle Inequality: $HAM(u, v) + HAM(v, w) \ge HAM(u, w)$.

S = A collection of sets.

Jaccard Similarity doesn't satisfy metric properties, e.g. SIM(S, S) = 1.

Define Jaccard Distance between two sets $S_i, S_j \in S$ as $JD(S_i, S_j) = 1 - SIM(S_i, S_j).$

Jaccard Distance Metric

Set S with the Jaccard distance measure satisfies the metric properties.

- 1. Non-negativity: $JD(S_i, S_j) \ge 0$.
- 2. Symmetric: $JD(S_i, S_j) = JD(S_j, S_i)$.
- 3. Identity: $JD(S_i, S_j) = 0$ if and only if $S_i = S_j$.
- 4. Triangle Inequality: $JD(S_i, S_j) + JD(S_j, S_k) \ge JD(S_i, S_k)$.

Sensitive Function Family

Let *d* be a distance measure and let $d_1 < d_2$ be two distances. Let $0 \le p_2 < p_1 \le 1$. A family of functions \mathcal{F} is said to be (d_1, d_2, p_1, p_2) -sensitive if for every $f \in \mathcal{F}$ the following two conditions hold;

- 1. If $d(x, y) \le d_1$ then $Pr[f(x) = f(y)] \ge p_1$.
- 2. If $d(x, y) \ge d_2$ then $Pr[f(x) = f(y)] \le p_2$.

Consider the Jaccard distance measure for finding similar sets in a collection of sets \mathcal{S} .

Min-Hash Signature Family

Let $0 \le d_1 < d_2 \le 1$. The family of minhash-signatures is $(d_1, d_2, p_1 = 1 - d_1, p_2 = 1 - d_2)$ -sensitive.

Proof: Suppose that the Jaccard similarity between two sets is at least *s*. Then their Jaccard distance is at most $d_1 = 1 - s$. The probability that they will be hashed to the same bucket by minhash signatures is $\geq p_1 = s = 1 - d_1$.

Now suppose that the Jaccard similarity is at most s'. Then their Jaccard distance is at least $d_2 = 1 - s'$. The probability that the minhash signatures map them to the same bucket is at most $p_2 = s' = 1 - d_2$.

Consider two d-dimensional Boolean vectors u and v.

HAM(u, v) = Number of coordinates in which u and v differ

Let $f_i(x) = i$ -th coordinate of u.

For a randomly chosen index i, $Pr[f_i(u) = f_i(v)] = 1 - \frac{HAM(u,v)}{d}$

Evampla	u =	1	0	0	1	1	0	1	1
Example.	v =	1	1	0	0	1	1	1	1
$Pr[f_i(u) =$	$= f_i(v)]$	= 1	_ <u>H</u>	$\frac{IAM(u)}{d}$	<i>u,v)</i> =	= 1 -	$-\frac{3}{8} =$	$=\frac{5}{8}$	

Sensitive-family for Hamming distance

For any $d_1 < d_2$, $\mathcal{F} = \{f_1, f_2, \dots, f_d\}$ is a $(d_1, d_2, 1 - d_1/d, 1 - d_2/d)$ -sensitive family of functions.

Proof: Let $p_1 = 1 - d_1/d$ and $p_2 = 1 - d_2/d$. A family of functions \mathcal{F} is said to be (d_1, d_2, p_1, p_2) -sensitive if for every $f_i \in \mathcal{F}$ the following two conditions hold:

- 1. If $HAM(u, v) \leq d_1$ then $Pr[f_i(u) = f_i(v)] \geq p_1$
- 2. If $HAM(u, v) \ge d_2$ then $Pr[f_i(u) = f_i(v)] \le p_2$

P= Set of points in 2D and $\Delta>0$ a parameter.

Define hash function f_l by a line l with random orientation as follows:

Partition *l* into intervals of equal size 2Δ . Orthogonally project all points of *P* on *l*. Let $f_l(x)$ be the interval in which $x \in P$ projects to.

Sensitive Family via Projection on a Random Line

The family of hash functions with respect to the projection on a random line with intervals of size 2Δ is a $(\Delta, 4\Delta, 1/2, 1/3)$ -sensitive family.

Proof: Assume *l* is horizontal.

We first show that if $d(x, y) \leq \Delta$, then $Pr[f_l(x) = f_l(y)] \geq 1/2$.

Let *m* be the mid-point of the interval $f_l(x)$.

In $f_l(x)$, with probability 1/2 the projection of x lies to the left of m and with probability 1/2, the projection of y lies to the right of projection of x.

 \implies projection of y lies in $f_l(x)$ (i.e., $f_l(x) = f_l(y)$) as $d(x, y) \leq \Delta$.

Thus with probability 1/4, projections of x and y lie in $f_l(x)$ where the projection of x is to the left of m and the projection of y is to the right of the projection of x.

Same reasoning holds when $f_l(x)$ is to the right of m and the projection of y is to the left of the projection of x.

Since the above two cases are mutually exclusive, $Pr[f_l(x) = f_l(y)] \ge 1/2$.

We want to show that $Pr[f_l(x) = f_l(y)] \le 1/3$.

Let θ be the angle of the line passing through x and y with respect to l.

For the projections of x and y to fall in the same interval, we will need that $d(x, y) \cos \theta \leq 2\Delta$.

For this to happen $\cos \theta \le 1/2$, or the angle the line xy forms with the horizontal needs to be between 60° and 90° .

This has at most 1/3-rd chance.

AND-OR Family

AND-Family

Let \mathcal{F} be (d_1, d_2, p_1, p_2) -sensitive family. Construct a new family \mathcal{G} by an *AND-construction* as follows:

AND-Family: Each function $g \in \mathcal{G}$ is formed from a set of r independently chosen functions of \mathcal{F} , say f_1, f_2, \ldots, f_r for some fixed value of r. Now, g(x) = g(y) if and only if for all $i = 1, \ldots, r$, $f_i(x) = f_i(y)$.

AND-Family

 \mathcal{G} is an (d_1, d_2, p_1^r, p_2^r) -sensitive AND family.

Proof: This is the probability of all the r independent events to occur simultaneously.

OR-Family

OR-Family: Each member g in \mathcal{G} is constructed by taking b independently chosen members f_1, f_2, \ldots, f_b from \mathcal{F} .

Now g(x) = g(y) if and only if $f_i(x) = f_i(y)$ for at least one of the members in $\{f_1, f_2, \ldots, f_b\}$.

OR-Family

G is an $(d_1, d_2, 1 - (1 - p_1)^b, 1 - (1 - p_2)^b)$ -sensitive OR family.

Proof: Estimate the probability that none of the *b*-events occur and then look at the complementary event.

	\mathcal{F}_1 (AND)	\mathcal{F}_2 (OR)	\mathcal{F}_3 (AND-OR)	\mathcal{F}_4 (OR-AND)
p	p^r	$1 - (1 - p)^b$	$1 - (1 - p^r)^b$	$(1 - (1 - p)^r)^b$
0.2	0.0001	0.6723	0.0079	0.0717
0.4	0.0256	0.9222	0.1216	0.4995
0.6	0.1296	0.9897	0.5004	0.8783
0.7	0.2401	0.9975	0.7446	0.9601
0.8	0.4096	0.9996	0.9282	0.9920
0.9	0.6561	0.9999	0.9951	0.9995

Table 1: Illustration of four families obtained for different values of p. \mathcal{F}_1 is the AND family for r = 4. \mathcal{F}_2 is OR family for b = 5. \mathcal{F}_3 is the AND-OR family for r = 4 and b = 5. \mathcal{F}_4 is the OR-AND family for r = 4 and b = 5.

We can apply the AND-OR amplification technique for any sensitive family. For example,

- 1. \mathcal{F} be a $(d_1, d_2, p_1 = 1 d_1, p_2 = 1 d_2)$ -sensitive minhash function family for similarity of sets.
- 2. Hamming distance $(d_1, d_2, 1 d_1/d, 1 d_2/d)$ -sensitive family for finding similar Boolean strings.
- 3. Projection on a random line $(\Delta, 4\Delta, 1/2, 1/3)$ -sensitive family for finding near points.
- 4. Metric Property \rightarrow Sensitive Family \rightarrow Probabilistic Amplification

Fingerprints

Fingerprints consists of **minutia points** and patterns that form ridges and bifurcations

Fingerprint with an overlay grid

Fingerprint mapped to a normalized grid cell

Statistical Analysis from fingerprint analyst:

- 1. Pr(minutia in a random grid cell of a fingerprint) = 0.2
- 2. Pr(given two fingerprints of the same finger and that one fingerprint has a minutia in a grid cell, other fingerprint has the minutia in that cell) = 0.85
- 3. Pick 3 random grid cells and define a (hash) function *f* that sends two fingerprints to the same bucket if they have minutia in each of those three cells
- 4. Pr(two arbitrary fingerprints will map to the same bucket by f) = $0.2^6 = 0.000064$
- 5. $\Pr(f \text{ maps the fingerprints of the same finger to the same bucket})$ = $0.2^3 \times 0.85^3 = 0.0049$

Suppose we have 1000 such functions and we take 'OR' of these functions

- 1. Pr(two fingerprints from different fingers map to the same bucket) $= 1 (1 0.000064)^{1000} \approx 0.061$
- 2. Pr(two fingerprints of the same finger map to the same bucket) $= 1 (1 0.0049)^{1000} \approx 0.992$

Take two groups of 1000 functions each and report a match if it's a match in both the groups.

- 1. Pr(two fingerprints from different fingers map to the same bucket) $\approx 0.061^2 = 0.0037$
- 2. Pr(two fingerprints of the same finger map to the same bucket) $\approx 0.992^2 = 0.984$

References

LSH has abundance of applications (Image Similarity, Documents Similarity, Nearest Neighbors, Similar Gene-Expressions, ...)

Main References:

- 1. Piotr Indyk and Rajeev Motwani, Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality, STOC1998
- 2. Aristides Gionis, Piotr Indyk and Rajeev Motwani, Similarity Search in High Dimensions via Hashing, VLDB 1999
- 3. LSH Algorithm and Implementation http://www.mit.edu/~andoni/LSH/
- 4. Chapter 3 in MMDS book (mmds.org)
- 5. Chapter on LSH in My Notes on Topics in Algorithm Design