Locality-Sensitive Hashing

Anil Maheshwari
anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

Outline

Introduction

Similarity of Documents

LSH

Metric Spaces

Sensitive Function Family

AND-OR Family

Fingerprints

References

Introduction

Objectives

How to find efficiently

1. Similar documents among a collection of documents
2. Similar web-pages among web-pages
3. Similar fingerprints among a database of fingerprints
4. Similar sets among a collection of sets
5. Similar images from a database of images
6. Similar vectors in higher dimensions.

Similarity of Documents

Similarity of Documents

Problem Definition
 Input: A collection of web-pages.
 Output: Report near duplicate web-pages.

k-shingles

Any substring of k words that appears in the document.

Text Document = "What is the likely date that the regular classes may resume in Ontario"
2 -shingles: What is, is the, the likely, ... , in Ontario
3 -shingles: What is the, is the likely, ..., resume in Ontario
In practice: 9-shingles for English Text and 5-shingles for e-mails

Similarity between sets

Text Document $D \rightarrow$ Set S

1. Form all the k-shingles of D
2. S is the collection of all k-shingles of D

Jaccard Similarity

For a pair of sets S and T, the Jaccard Similarity is defined as $\operatorname{SIM}(S, T)=\frac{|S \cap T|}{|S \cup T|}$

Figure 1: $|S|=8,|T|=5,|S \cup T|=10,|S \cap T|=3, \operatorname{SIM}(S, T)=\frac{|S \cap T|}{|S \cup T|}=\frac{3}{10}$

Problem: Find Similar Sets

New Problem

Given a constant $0 \leq s \leq 1$ and a collection of sets \mathcal{S}, find the pairs of sets in \mathcal{S} with Jaccard similarity $\geq s$
$U=\{$ Cruise, Ski, Resorts, Safari, Stay@Home $\}$

$$
\begin{array}{ll}
S_{1}=\{\text { Cruise, Safari }\} & S_{3}=\{\text { Ski, Safari, Stay@Home }\} \\
S_{2}=\{\text { Resorts }\} & S_{4}=\{\text { Cruise, Resorts, Safari }\}
\end{array}
$$

Problem: Given $\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$ and $s=\frac{1}{2}$, report all pairs that are s-similar.

$$
\begin{array}{ll}
\operatorname{SIM}\left(S_{1}, S_{2}\right)=\frac{0}{3}=0 & \operatorname{SIM}\left(S_{2}, S_{3}\right)=\frac{0}{4}=0 \\
\operatorname{SIM}\left(S_{1}, S_{3}\right)=\frac{1}{4} & \operatorname{SIM}\left(S_{2}, S_{4}\right)=\frac{1}{3} \\
\operatorname{SIM}\left(S_{1}, S_{4}\right)=\frac{2}{3} & \operatorname{SIM}\left(S_{3}, S_{4}\right)=\frac{1}{5}
\end{array}
$$

Characteristic Matrix Representation of Sets

$U=\{$ Cruise, Ski, Resorts, Safari, Stay@Home $\}$
$\mathcal{S}=\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$, where each $S_{i} \subseteq U$
e.g. $S_{1}=\{$ Cruise, Safari $\}$ and $S_{2}=\{$ Resorts $\}$

Characteristic matrix for \mathcal{S} :

	S_{1}	S_{2}	S_{3}	S_{4}
Cruise	1	0	0	1
Ski	0	0	1	0
Resorts	0	1	0	1
Safari	1	0	1	1
Stay@Home	0	0	1	0

MinHash Signatures via Random Permutation

Permute Rows of characteristic matrix $-\pi: 01234 \rightarrow 40312$

		S_{1}	S_{2}	S_{3}	S_{4}
0	Cruise	1	0	0	1
1	Ski	0	0	1	0
2	Resorts	0	1	0	1
3	Safari	1	0	1	1
4	Stay@Home	0	0	1	0

π		S_{1}	S_{2}	S_{3}	S_{4}
$1 \rightarrow 0$	Ski	0	0	1	0
$3 \rightarrow 1$	Safari	1	0	1	1
$4 \rightarrow 2$	Stay@Home	0	0	1	0
$2 \rightarrow 3$	Resorts	0	1	0	1
$0 \rightarrow 4$	Cruise	1	0	0	1

Minhash Signatures for a set S_{i} w.r.t. π is the row-number of first non-zero element in the column corresponding to S_{i}
$h\left(S_{1}\right)=1$
$h\left(S_{2}\right)=3$
$h\left(S_{3}\right)=0$
$h\left(S_{4}\right)=1$

Key Lemma

Lemma

For any two sets S_{i} and S_{j} in a collection of sets \mathcal{S} where the elements are drawn from the universe U, the probability that the minhash value $h\left(S_{i}\right)$ equals $h\left(S_{j}\right)$ is equal to the Jaccard similarity of S_{i} and S_{j}, i.e.,

$$
\operatorname{Pr}\left[h\left(S_{i}\right)=h\left(S_{j}\right)\right]=\operatorname{SIM}\left(S_{i}, S_{j}\right)=\frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i} \cup S_{j}\right|} .
$$

		S_{1}	S_{2}	S_{3}	S_{4}
0	Ski	0	0	1	0
1	Safari	1	0	1	1
2	Stay@Home	0	0	1	0
3	Resorts	0	1	0	1
4	Cruise	1	0	0	1

$\operatorname{Pr}\left[h\left(S_{1}\right)=h\left(S_{4}\right)\right]=\operatorname{SIM}\left(S_{1}, S_{4}\right)=\frac{\left|S_{1} \cap S_{4}\right|}{\left|S_{1} \cup S_{4}\right|}=\frac{2}{3}$

Proof of Key Lemma

Consider the rows corresponding to the columns of S_{i} and S_{j}.
Let $x=$ Number of rows where both the columns have a 1 .
Let $y=$ Number of rows where exactly one of the columns has a 1 .

S_{1}	S_{4}		
0	0		
1	1	\rightarrow	x
0	0		
0	1	\rightarrow	y
1	1	\rightarrow	x

Observe that $\left|S_{i} \cap S_{j}\right|=x$ and $\left|S_{i} \cup S_{j}\right|=x+y$.
Note that the rows where both the columns have 0's can't be the minHash signature of S_{i} or S_{j}.

Probability that $h\left(S_{i}\right)=h\left(S_{j}\right)$ is same as that the row corresponding to x is the 'first one' as compared to the rows corresponding to y.
Thus, $\operatorname{Pr}\left[h\left(S_{i}\right)=h\left(S_{j}\right)\right]=\frac{x}{x+y}=\frac{\left|S_{i} \cap S_{j}\right|}{\left|S_{i} \cup S_{j}\right|}=\operatorname{SIM}\left(S_{i}, S_{j}\right)$

MinHashSignature Matrix

MinHash Signature matrix for $|\mathcal{S}|=11$ sets with 12 hash functions

S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}	S_{10}	S_{11}
2	2	1	0	0	1	3	2	5	0	3
1	3	2	0	2	2	1	4	2	1	2
3	0	3	0	4	3	2	0	0	4	2
0	4	3	1	5	3	3	2	3	5	4
2	1	1	0	4	1	2	1	4	2	5
4	2	1	0	5	2	3	2	3	5	4
2	4	3	0	5	3	3	4	4	5	3
0	2	4	1	3	4	3	2	2	2	4
0	2	1	0	5	1	1	1	1	5	1
0	5	1	0	2	1	3	2	1	5	4
1	3	1	0	5	2	3	3	6	3	2
0	5	2	1	5	1	2	2	6	5	4

LSH

LSH for MinHash

Partitioning of a signature matrix into $b=4$ bands of $r=3$ rows each.

Band	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}	S_{10}	S_{11}
I	2	2	1	0	0	1	3	2	5	0	3
	1	3	2	0	2	2	1	4	2	1	2
	3	0	3	0	4	3	2	0	0	4	2
II	0	4	3	1	5	3	3	2	3	5	4
	2	1	1	0	4	1	2	1	4	2	5
	4	2	1	0	5	2	3	2	3	5	4
III	2	4	3	0	5	3	3	4	4	5	3
	0	2	4	1	3	4	3	2	2	2	4
	0	2	1	0	5	1	1	1	1	5	1
IV	0	5	1	0	2	1	3	2	1	5	4
	1	3	1	0	5	2	3	3	6	3	2
	0	5	2	1	5	1	2	2	6	5	4

Band 3: $\left\{S_{3}, S_{6}, S_{11}\right\}$ are hashed into the same bucket, and so are $\left\{S_{8}, S_{9}\right\}$

Probability of finding similar sets

Lemma

Let $s>0$ be the Jaccard similarity of two sets. The probability that the minHash signature matrix agrees in all the rows of at least one of the bands for these two sets is $f(s)=1-\left(1-s^{r}\right)^{b}$.

Band	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S_{9}	S_{10}	S_{11}
I	2	2	1	0	0	1	3	2	5	0	3
	1	3	2	0	2	2	1	4	2	1	2
	3	0	3	0	4	3	2	0	0	4	2
II	0	4	3	1	5	3	3	2	3	5	4
	2	1	1	0	4	1	2	1	4	2	5
	4	2	1	0	5	2	3	2	3	5	4
III	2	4	3	0	5	3	3	4	4	5	3
	0	2	4	1	3	4	3	2	2	2	4
	0	2	1	0	5	1	1	1	1	5	1
IV	0	5	1	0	2	1	3	2	1	5	4
	1	3	1	0	5	2	3	3	6	3	2
	0	5	2	1	5	1	2	2	6	5	4

Proof

Claim: $\operatorname{Pr}\left(\right.$ signatures agree in all rows of ≥ 1 bands for S_{i} and S_{j} with Jaccard Similarity $s)=f(s)=1-\left(1-s^{r}\right)^{b}$. Answer the following:

1. Probability that the signature agrees in a row
2. Probability that the signature agrees in all rows of a band
3. Probability that the signature doesn't agree in at least one of the rows of a band
4. Probability that the signature doesn't agree in any of the bands
5. Probability that the signature agrees in at least one of the bands

Understanding $f(s)$

$$
f(s)=1-\left(1-s^{r}\right)^{b} \text { for different values of } s, b, \text { and } r \text { : }
$$

(b, r) $f(s)=1-\left(1-s^{r}\right)^{b} \searrow$	$(4,3)$	$(16,4)$	$(20,5)$	$(25,5)$	$(100,10)$
$s=0.2$	0.0316	0.0252	0.0063	0.0079	0.0000
$s=0.4$	0.2324	0.3396	0.1860	0.2268	0.0104
$s=0.5$	0.4138	0.6439	0.4700	0.5478	0.0930
$s=0.6$	0.6221	0.8914	0.8019	0.8678	0.4547
$s=0.8$	0.9432	0.9997	0.9996	0.9999	0.9999
$s=1.0$	1.0	1.0	1.0	1.0	1.0
Threshold $t=\left(\frac{1}{b}\right)^{\left(\frac{1}{r}\right)}$	0.6299	0.5	0.5492	0.5253	0.6309

Comments on S-Curve

1. For what values of $s, f^{\prime \prime}(s)=0$?
$s=\left(\frac{r-1}{b r-1}\right)^{\frac{1}{r}}$
2. For values of $b r \gg 1, s \approx\left(\frac{1}{b}\right)^{\frac{1}{r}}$
3. Steepest slope occurs at $s \approx(1 / b)^{(1 / r)}$
4. If the Jaccard similarity s of the two sets is above the threshold $t=\left(\frac{1}{b}\right)^{\frac{1}{r}}$, the probability that they will be found potentially similar is very high.
5. Consider the entries in the row corresponding to $s=0.8$ in the table and observe that most of the values for $f(s=0.8) \rightarrow 1$ as $s>t$.

Computational Summary

- Input: Collection of m text documents of size \mathcal{D}
- k-shingles: $\mathrm{Size}=k \mathcal{D}$
- Characteristic matrix of size $|U| \times m$, where U is the universe of all possible k-shingles
- Signature matrix of size $n \times m$ using n-permutations
- $\left\lceil\frac{n}{r}\right\rceil$ bands each consisting of r rows
- Hash maps from bands to buckets
- Output: All pairs of documents that are in the same bucket corresponding to a band
- Check whether the pairs correspond to similar documents!
- With the right choice of threshold $\operatorname{Pr}($ the pair is similar) $\rightarrow 1$

What makes LSH works?

How can we apply for other 'similarity' problems?
How can we apply for 'nearest neighbor' problems?

Metric Spaces

Metric Spaces

Consider a finite set X. A metric or distance measure d on X is a function $d: X \times X \rightarrow[0, \infty)$ satisfying the following properties. For all elements $u, v, w \in X$:

1. Non-negativity: $d(u, v) \geq 0$.
2. Symmetric: $d(u, v)=d(v, u)$.
3. Identity: $d(u, v)=0$ if and only if $u=v$.
4. Triangle Inequality: $d(u, v)+d(v, w) \geq d(u, w)$.

Examples: Euclidean distance among set of n-points in plane.

Euclidean Distance

Let $X=$ Set of n-points in plane.
Euclidean distance between any two points $p_{i}=\left(x_{i}, y_{i}\right)$ and $p_{j}=\left(x_{j}, y_{j}\right)$ is $d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$.

Euclidean Distance Metric

X with the Euclidean distance measure satisfies the metric properties.

1. Non-negativity: $d(u, v) \geq 0$.
2. Symmetric: $d(u, v)=d(v, u)$.
3. Identity: $d(u, v)=0$ if and only if $u=v$.
4. Triangle Inequality: $d(u, v)+d(v, w) \geq d(u, w)$.

Hamming Distance Metric

$X=$ Set of d-dimensional Boolean vectors.
Hamming distance HAM $(u, v)=$ Number of coordinates in which two vectors $u, v \in X$ differ.

An Example: $\begin{array}{|lllllllll|}u= & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ v= & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ & H A M\end{array}(u, v)=3$

Hamming Distance Metric

Hamming distance is a metric over the d-dimensional vectors.

1. Non-negativity: $\operatorname{HAM}(u, v) \geq 0$.
2. Symmetric: $\operatorname{HAM}(u, v)=\operatorname{HAM}(v, u)$.
3. Identity: $\operatorname{HAM}(u, v)=0$ if and only if $u=v$.
4. Triangle Inequality: $\operatorname{HAM}(u, v)+\operatorname{HAM}(v, w) \geq \operatorname{HAM}(u, w)$.

Jaccard Distance Metric

$\mathcal{S}=$ A collection of sets.
Jaccard Similarity doesn't satisfy metric properties, e.g. $\operatorname{SIM}(S, S)=1$.
Define Jaccard Distance between two sets $S_{i}, S_{j} \in \mathcal{S}$ as
$\mathrm{JD}\left(S_{i}, S_{j}\right)=1-\operatorname{SIM}\left(S_{i}, S_{j}\right)$.

Jaccard Distance Metric

Set \mathcal{S} with the Jaccard distance measure satisfies the metric properties.

1. Non-negativity: $\mathrm{JD}\left(S_{i}, S_{j}\right) \geq 0$.
2. Symmetric: $\mathrm{JD}\left(S_{i}, S_{j}\right)=\mathrm{JD}\left(S_{j}, S_{i}\right)$.
3. Identity: JD $\left(S_{i}, S_{j}\right)=0$ if and only if $S_{i}=S_{j}$.
4. Triangle Inequality: $\mathrm{JD}\left(S_{i}, S_{j}\right)+\mathrm{JD}\left(S_{j}, S_{k}\right) \geq \mathrm{JD}\left(S_{i}, S_{k}\right)$.

Sensitive Function Family

Sensitive Family of Functions

Let d be a distance measure and let $d_{1}<d_{2}$ be two distances. Let
$0 \leq p_{2}<p_{1} \leq 1$. A family of functions \mathcal{F} is said to be ($d_{1}, d_{2}, p_{1}, p_{2}$)-sensitive if for every $f \in \mathcal{F}$ the following two conditions hold;

1. If $d(x, y) \leq d_{1}$ then $\operatorname{Pr}[f(x)=f(y)] \geq p_{1}$.
2. If $d(x, y) \geq d_{2}$ then $\operatorname{Pr}[f(x)=f(y)] \leq p_{2}$.

Family of MinHash Signatures

Consider the Jaccard distance measure for finding similar sets in a collection of sets \mathcal{S}.

```
Min-Hash Signature Family
Let 0\leqd}<<\mp@subsup{d}{2}{}\leq1. The family of minhash-signatures is
( }\mp@subsup{d}{1}{},\mp@subsup{d}{2}{},\mp@subsup{p}{1}{}=1-\mp@subsup{d}{1}{},\mp@subsup{p}{2}{}=1-\mp@subsup{d}{2}{})\mathrm{ -sensitive.
```

Proof: Suppose that the Jaccard similarity between two sets is at least s. Then their Jaccard distance is at most $d_{1}=1-s$. The probability that they will be hashed to the same bucket by minhash signatures is
$\geq p_{1}=s=1-d_{1}$.
Now suppose that the Jaccard similarity is at most s^{\prime}. Then their Jaccard distance is at least $d_{2}=1-s^{\prime}$. The probability that the minhash signatures map them to the same bucket is at most $p_{2}=s^{\prime}=1-d_{2}$.

LSH Family for Hamming Distance

Consider two d-dimensional Boolean vectors u and v.
$\operatorname{HAM}(u, v)=$ Number of coordinates in which u and v differ
Let $f_{i}(x)=i$-th coordinate of u.
For a randomly chosen index $i, \operatorname{Pr}\left[f_{i}(u)=f_{i}(v)\right]=1-\frac{\operatorname{HAM}(u, v)}{d}$

Example:	$u=$	1	0	0	1	1	0	1	1
$v=$	1	1	0	0	1	1	1	1	

$\operatorname{Pr}\left[f_{i}(u)=f_{i}(v)\right]=1-\frac{\operatorname{HAM}(u, v)}{d}=1-\frac{3}{8}=\frac{5}{8}$

Sensitive-family for Hamming distance

For any $d_{1}<d_{2}, \mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is a $\left(d_{1}, d_{2}, 1-d_{1} / d, 1-d_{2} / d\right)$-sensitive family of functions.

Proof: Let $p_{1}=1-d_{1} / d$ and $p_{2}=1-d_{2} / d$.
A family of functions \mathcal{F} is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f_{i} \in \mathcal{F}$ the following two conditions hold:

1. If $\operatorname{HAM}(u, v) \leq d_{1}$ then $\operatorname{Pr}\left[f_{i}(u)=f_{i}(v)\right] \geq p_{1}$
2. If $\operatorname{HAM}(u, v) \geq d_{2}$ then $\operatorname{Pr}\left[f_{i}(u)=f_{i}(v)\right] \leq p_{2}$

LSH Family for Near Neighbors in 2D

$P=$ Set of points in 2D and $\Delta>0$ a parameter.
Define hash function f_{l} by a line l with random orientation as follows:
Partition l into intervals of equal size 2Δ.
Orthogonally project all points of P on l.
Let $f_{l}(x)$ be the interval in which $x \in P$ projects to.

LSH Family for Near Neighbors

Sensitive Family via Projection on a Random Line

The family of hash functions with respect to the projection on a random line with intervals of size 2Δ is a $(\Delta, 4 \Delta, 1 / 2,1 / 3)$-sensitive family.

Proof: Assume l is horizontal.
We first show that if $d(x, y) \leq \Delta$, then $\operatorname{Pr}\left[f_{l}(x)=f_{l}(y)\right] \geq 1 / 2$.
Let m be the mid-point of the interval $f_{l}(x)$.
In $f_{l}(x)$, with probability $1 / 2$ the projection of x lies to the left of m and with probability $1 / 2$, the projection of y lies to the right of projection of x.
\Longrightarrow projection of y lies in $f_{l}(x)$ (i.e., $\left.f_{l}(x)=f_{l}(y)\right)$ as $d(x, y) \leq \Delta$.
Thus with probability $1 / 4$, projections of x and y lie in $f_{l}(x)$ where the projection of x is to the left of m and the projection of y is to the right of the projection of x.

Same reasoning holds when $f_{l}(x)$ is to the right of m and the projection of y is to the left of the projection of x.

Since the above two cases are mutually exclusive, $\operatorname{Pr}\left[f_{l}(x)=f_{l}(y)\right] \geq 1 / 2$.

Proof (contd.)

Now consider the case when $d(x, y)>4 \Delta$.

We want to show that $\operatorname{Pr}\left[f_{l}(x)=f_{l}(y)\right] \leq 1 / 3$.
Let θ be the angle of the line passing through x and y with respect to l.
For the projections of x and y to fall in the same interval, we will need that $d(x, y) \cos \theta \leq 2 \Delta$.

For this to happen $\cos \theta \leq 1 / 2$, or the angle the line $x y$ forms with the horizontal needs to be between 60° and 90°.

This has at most $1 / 3$-rd chance.

AND-OR Family

AND-Family

Let \mathcal{F} be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family.
Construct a new family \mathcal{G} by an AND-construction as follows:
AND-Family: Each function $g \in \mathcal{G}$ is formed from a set of r independently chosen functions of \mathcal{F}, say $f_{1}, f_{2}, \ldots, f_{r}$ for some fixed value of r.
Now, $g(x)=g(y)$ if and only if for all $i=1, \ldots, r, f_{i}(x)=f_{i}(y)$.

AND-Family

\mathcal{G} is an $\left(d_{1}, d_{2}, p_{1}^{r}, p_{2}^{r}\right)$-sensitive AND family.
Proof: This is the probability of all the r independent events to occur simultaneously.

OR-Family

OR-Family: Each member g in \mathcal{G} is constructed by taking b independently chosen members $f_{1}, f_{2}, \ldots, f_{b}$ from \mathcal{F}.
Now $g(x)=g(y)$ if and only if $f_{i}(x)=f_{i}(y)$ for at least one of the members in $\left\{f_{1}, f_{2}, \ldots, f_{b}\right\}$.

OR-Family

\mathcal{G} is an $\left(d_{1}, d_{2}, 1-\left(1-p_{1}\right)^{b}, 1-\left(1-p_{2}\right)^{b}\right)$-sensitive OR family.
Proof: Estimate the probability that none of the b-events occur and then look at the complementary event.

Probabilistic Amplification

	\mathcal{F}_{1} (AND)	$\mathcal{F}_{2}(\mathrm{OR})$	\mathcal{F}_{3} (AND-OR)	\mathcal{F}_{4} (OR-AND)
p	p^{r}	$1-(1-p)^{b}$	$1-\left(1-p^{r}\right)^{b}$	$\left(1-(1-p)^{r}\right)^{b}$
0.2	0.0001	0.6723	0.0079	0.0717
0.4	0.0256	0.9222	0.1216	0.4995
0.6	0.1296	0.9897	0.5004	0.8783
0.7	0.2401	0.9975	0.7446	0.9601
0.8	0.4096	0.9996	0.9282	0.9920
0.9	0.6561	0.9999	0.9951	0.9995

Table 1: Illustration of four families obtained for different values of $p . \mathcal{F}_{1}$ is the AND family for $r=4 . \mathcal{F}_{2}$ is OR family for $b=5 . \mathcal{F}_{3}$ is the AND-OR family for $r=4$ and $b=5 . \mathcal{F}_{4}$ is the OR-AND family for $r=4$ and $b=5$.

Probabilistic Amplification Examples

We can apply the AND-OR amplification technique for any sensitive family. For example,

1. \mathcal{F} be a $\left(d_{1}, d_{2}, p_{1}=1-d_{1}, p_{2}=1-d_{2}\right)$-sensitive minhash function family for similarity of sets.
2. Hamming distance $\left(d_{1}, d_{2}, 1-d_{1} / d, 1-d_{2} / d\right)$-sensitive family for finding similar Boolean strings.
3. Projection on a random line $(\Delta, 4 \Delta, 1 / 2,1 / 3)$-sensitive family for finding near points.
4. Metric Property \rightarrow Sensitive Family \rightarrow Probabilistic Amplification

Fingerprints

Matching Fingerprints

Fingerprints consists of minutia points and patterns that form ridges and bifurcations

Fingerprint with an overlay grid

Fingerprint mapped to a normalized grid cell

Minutia of two fingerprints

Statistical Analysis from fingerprint analyst:

1. $\operatorname{Pr}($ minutia in a random grid cell of a fingerprint $)=0.2$
2. Pr (given two fingerprints of the same finger and that one fingerprint has a minutia in a grid cell, other fingerprint has the minutia in that cell) $=0.85$
3. Pick 3 random grid cells and define a (hash) function f that sends two fingerprints to the same bucket if they have minutia in each of those three cells
4. $\operatorname{Pr}($ two arbitrary fingerprints will map to the same bucket by f)
$=0.2^{6}=0.000064$
5. $\operatorname{Pr}(f$ maps the fingerprints of the same finger to the same bucket $)$ $=0.2^{3} \times 0.85^{3}=0.0049$

Probabilistic Amplification

Suppose we have 1000 such functions and we take 'OR' of these functions

1. Pr (two fingerprints from different fingers map to the same bucket)

$$
=1-(1-0.000064)^{1000} \approx 0.061
$$

2. $\operatorname{Pr}($ two fingerprints of the same finger map to the same bucket)

$$
=1-(1-0.0049)^{1000} \approx 0.992
$$

Take two groups of 1000 functions each and report a match if it's a match in both the groups.

1. Pr (two fingerprints from different fingers map to the same bucket) $\approx 0.061^{2}=0.0037$
2. $\operatorname{Pr}($ two fingerprints of the same finger map to the same bucket) $\approx 0.992^{2}=0.984$

References

Conclusions

LSH has abundance of applications
(Image Similarity, Documents Similarity, Nearest Neighbors, Similar Gene-Expressions, ...)

Main References:

1. Piotr Indyk and Rajeev Motwani, Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality, STOC1998
2. Aristides Gionis, Piotr Indyk and Rajeev Motwani, Similarity Search in High Dimensions via Hashing, VLDB 1999
3. LSH Algorithm and Implementation
```
http://www.mit.edu/~andoni/LSH/
```

4. Chapter 3 in MMDS book (mmds.org)
5. Chapter on LSH in My Notes on Topics in Algorithm Design
