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Introduction



Objectives

How to find efficiently

1. Similar documents among a collection of documents

2. Similar web-pages among web-pages

3. Similar fingerprints among a database of fingerprints

4. Similar sets among a collection of sets

5. Similar images from a database of images

6. Similar vectors in higher dimensions.
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Similarity of Documents



Similarity of Documents

Problem Definition
Input: A collection of web-pages.
Output: Report near duplicate web-pages.

k-shingles
Any substring of k words that appears in the document.

Text Document = “What is the likely date that the regular classes may
resume in Ontario”

2−shingles: What is, is the, the likely, . . . , in Ontario
3−shingles: What is the, is the likely, . . . , resume in Ontario

In practice: 9−shingles for English Text and 5−shingles for e-mails
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Similarity between sets

Text Document D → Set S

1. Form all the k-shingles of D

2. S is the collection of all k-shingles of D

Jaccard Similarity
For a pair of sets S and T , the Jaccard Similarity is defined as
SIM(S, T ) = |S∩T |

|S∪T |

S T

Figure 1: |S| = 8, |T | = 5, |S ∪ T | = 10, |S ∩ T | = 3, SIM(S, T ) =
|S∩T |
|S∪T | =

3
10
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Problem: Find Similar Sets

New Problem
Given a constant 0 ≤ s ≤ 1 and a collection of sets S, find the pairs of sets
in S with Jaccard similarity ≥ s

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S1 = {Cruise, Safari} S3 = {Ski, Safari, Stay@Home}

S2 = {Resorts} S4 = {Cruise, Resorts, Safari}

Problem: Given S = {S1, S2, S3, S4} and s = 1
2
, report all pairs that are

s-similar.

SIM(S1, S2) = 0
3

= 0 SIM(S2, S3) = 0
4

= 0

SIM(S1, S3) = 1
4

SIM(S2, S4) = 1
3

SIM(S1, S4) = 2
3

SIM(S3, S4) = 1
5
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Characteristic Matrix Representation of Sets

U = {Cruise, Ski, Resorts, Safari, Stay@Home}

S = {S1, S2, S3, S4}, where each Si ⊆ U
e.g. S1 = {Cruise, Safari} and S2 = {Resorts}

Characteristic matrix for S:

S1 S2 S3 S4

Cruise 1 0 0 1
Ski 0 0 1 0
Resorts 0 1 0 1
Safari 1 0 1 1
Stay@Home 0 0 1 0
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MinHash Signatures via Random Permutation

Permute Rows of characteristic matrix - π : 01234→ 40312

S1 S2 S3 S4

0 Cruise 1 0 0 1
1 Ski 0 0 1 0
2 Resorts 0 1 0 1
3 Safari 1 0 1 1
4 Stay@Home 0 0 1 0

π S1 S2 S3 S4

1 → 0 Ski 0 0 1 0
3 → 1 Safari 1 0 1 1
4 → 2 Stay@Home 0 0 1 0
2 → 3 Resorts 0 1 0 1
0 → 4 Cruise 1 0 0 1

Minhash Signatures for a set Si w.r.t. π is the row-number of first non-zero
element in the column corresponding to Si

h(S1) = 1

h(S2) = 3

h(S3) = 0

h(S4) = 1
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Key Lemma

Lemma
For any two sets Si and Sj in a collection of sets S where the elements are
drawn from the universe U , the probability that the minhash value h(Si)

equals h(Sj) is equal to the Jaccard similarity of Si and Sj , i.e.,
Pr[h(Si) = h(Sj)] = SIM(Si, Sj) =

|Si∩Sj |
|Si∪Sj |

.

S1 S2 S3 S4

0 Ski 0 0 1 0
1 Safari 1 0 1 1
2 Stay@Home 0 0 1 0
3 Resorts 0 1 0 1
4 Cruise 1 0 0 1

Pr[h(S1) = h(S4)] = SIM(S1, S4) = |S1∩S4|
|S1∪S4|

= 2
3
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Proof of Key Lemma

Consider the rows corresponding to the columns of Si and Sj .

Let x = Number of rows where both the columns have a 1.

Let y = Number of rows where exactly one of the columns has a 1.

S1 S4

0 0
1 1 → x

0 0
0 1 → y

1 1 → x

Observe that |Si ∩ Sj | = x and |Si ∪ Sj | = x+ y.

Note that the rows where both the columns have 0’s can’t be the minHash
signature of Si or Sj .

Probability that h(Si) = h(Sj) is same as that the row corresponding to x is
the ‘first one’ as compared to the rows corresponding to y.

Thus, Pr[h(Si) = h(Sj)] = x
x+y

=
|Si∩Sj |
|Si∪Sj |

= SIM(Si, Sj)
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MinHashSignature Matrix

MinHash Signature matrix for |S| = 11 sets with 12 hash functions

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

2 2 1 0 0 1 3 2 5 0 3
1 3 2 0 2 2 1 4 2 1 2
3 0 3 0 4 3 2 0 0 4 2
0 4 3 1 5 3 3 2 3 5 4
2 1 1 0 4 1 2 1 4 2 5
4 2 1 0 5 2 3 2 3 5 4
2 4 3 0 5 3 3 4 4 5 3
0 2 4 1 3 4 3 2 2 2 4
0 2 1 0 5 1 1 1 1 5 1
0 5 1 0 2 1 3 2 1 5 4
1 3 1 0 5 2 3 3 6 3 2
0 5 2 1 5 1 2 2 6 5 4
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LSH for MinHash

Partitioning of a signature matrix into b = 4 bands of r = 3 rows each.

Band S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

2 2 1 0 0 1 3 2 5 0 3
I 1 3 2 0 2 2 1 4 2 1 2

3 0 3 0 4 3 2 0 0 4 2
0 4 3 1 5 3 3 2 3 5 4

II 2 1 1 0 4 1 2 1 4 2 5
4 2 1 0 5 2 3 2 3 5 4
2 4 3 0 5 3 3 4 4 5 3

III 0 2 4 1 3 4 3 2 2 2 4
0 2 1 0 5 1 1 1 1 5 1
0 5 1 0 2 1 3 2 1 5 4

IV 1 3 1 0 5 2 3 3 6 3 2
0 5 2 1 5 1 2 2 6 5 4

Band 3: {S3, S6, S11} are hashed into the same bucket, and so are {S8, S9}
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Probability of finding similar sets

Lemma
Let s > 0 be the Jaccard similarity of two sets. The probability that the
minHash signature matrix agrees in all the rows of at least one of the bands
for these two sets is f(s) = 1− (1− sr)b.

Band S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
2 2 1 0 0 1 3 2 5 0 3

I 1 3 2 0 2 2 1 4 2 1 2
3 0 3 0 4 3 2 0 0 4 2
0 4 3 1 5 3 3 2 3 5 4

II 2 1 1 0 4 1 2 1 4 2 5
4 2 1 0 5 2 3 2 3 5 4
2 4 3 0 5 3 3 4 4 5 3

III 0 2 4 1 3 4 3 2 2 2 4
0 2 1 0 5 1 1 1 1 5 1
0 5 1 0 2 1 3 2 1 5 4

IV 1 3 1 0 5 2 3 3 6 3 2
0 5 2 1 5 1 2 2 6 5 4
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Proof

Claim: Pr(signatures agree in all rows of ≥ 1 bands for Si and Sj with
Jaccard Similarity s)= f(s) = 1− (1− sr)b. Answer the following:

1. Probability that the signature agrees in a row

2. Probability that the signature agrees in all rows of a band

3. Probability that the signature doesn’t agree in at least one of the rows of
a band

4. Probability that the signature doesn’t agree in any of the bands

5. Probability that the signature agrees in at least one of the bands
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Understanding f(s)

f(s) = 1− (1− sr)b for different values of s, b, and r:

(b, r) (4, 3) (16, 4) (20, 5) (25, 5) (100, 10)

f(s) = 1− (1− sr)b ↘

s = 0.2 0.0316 0.0252 0.0063 0.0079 0.0000

s = 0.4 0.2324 0.3396 0.1860 0.2268 0.0104

s = 0.5 0.4138 0.6439 0.4700 0.5478 0.0930

s = 0.6 0.6221 0.8914 0.8019 0.8678 0.4547

s = 0.8 0.9432 0.9997 0.9996 0.9999 0.9999

s = 1.0 1.0 1.0 1.0 1.0 1.0

Threshold t = ( 1
b
)
( 1
r
)

0.6299 0.5 0.5492 0.5253 0.6309
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S-curve
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Comments on S-Curve

1. For what values of s, f ′′(s) = 0?
s = ( r−1

br−1
)
1
r

2. For values of br >> 1, s ≈ ( 1
b
)
1
r

3. Steepest slope occurs at s ≈ (1/b)(1/r)

4. If the Jaccard similarity s of the two sets is above the threshold t = ( 1
b
)
1
r ,

the probability that they will be found potentially similar is very high.

5. Consider the entries in the row corresponding to s = 0.8 in the table and
observe that most of the values for f(s = 0.8)→ 1 as s > t.
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Computational Summary

• Input: Collection of m text documents of size D

• k-shingles: Size = kD

• Characteristic matrix of size |U | ×m, where U is the universe of all
possible k-shingles

• Signature matrix of size n×m using n-permutations

• dn
r
e bands each consisting of r rows

• Hash maps from bands to buckets

• Output: All pairs of documents that are in the same bucket
corresponding to a band

• Check whether the pairs correspond to similar documents!

• With the right choice of threshold
Pr(the pair is similar)→ 1
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What makes LSH works?

How can we apply for other ‘similarity’ problems?

How can we apply for ‘nearest neighbor’ problems?
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Metric Spaces



Metric Spaces

Consider a finite set X. A metric or distance measure d on X is a function
d : X ×X → [0,∞) satisfying the following properties. For all elements
u, v, w ∈ X:

1. Non-negativity: d(u, v) ≥ 0.

2. Symmetric: d(u, v) = d(v, u).

3. Identity: d(u, v) = 0 if and only if u = v.

4. Triangle Inequality: d(u, v) + d(v, w) ≥ d(u,w).

Examples: Euclidean distance among set of n-points in plane.
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Euclidean Distance

Let X = Set of n-points in plane.
Euclidean distance between any two points pi = (xi, yi) and pj = (xj , yj) is
d(pi, pj) =

√
(xi − xj)2 + (yi − yj)2.

Euclidean Distance Metric
X with the Euclidean distance measure satisfies the metric properties.

1. Non-negativity: d(u, v) ≥ 0.
2. Symmetric: d(u, v) = d(v, u).
3. Identity: d(u, v) = 0 if and only if u = v.
4. Triangle Inequality: d(u, v) + d(v, w) ≥ d(u,w).

u

v

w

d(u, v) + d(v, w) ≥ d(u,w)
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Hamming Distance Metric

X = Set of d-dimensional Boolean vectors.
Hamming distance HAM(u, v)= Number of coordinates in which two vectors
u, v ∈ X differ.

An Example:
u = 1 0 0 1 1 0 1 1
v = 1 1 0 0 1 1 1 1

HAM(u, v) = 3

Hamming Distance Metric
Hamming distance is a metric over the d-dimensional vectors.

1. Non-negativity: HAM(u, v) ≥ 0.

2. Symmetric: HAM(u, v) = HAM(v, u).

3. Identity: HAM(u, v) = 0 if and only if u = v.

4. Triangle Inequality: HAM(u, v) + HAM(v, w) ≥ HAM(u,w).
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Jaccard Distance Metric

S = A collection of sets.
Jaccard Similarity doesn’t satisfy metric properties, e.g. SIM(S, S) = 1.

Define Jaccard Distance between two sets Si, Sj ∈ S as
JD(Si, Sj) = 1− SIM(Si, Sj).

Jaccard Distance Metric
Set S with the Jaccard distance measure satisfies the metric properties.

1. Non-negativity: JD(Si, Sj) ≥ 0.

2. Symmetric: JD(Si, Sj) = JD(Sj , Si).

3. Identity: JD(Si, Sj) = 0 if and only if Si = Sj .

4. Triangle Inequality: JD(Si, Sj) + JD(Sj , Sk) ≥ JD(Si, Sk).
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Sensitive Family of Functions

Let d be a distance measure and let d1 < d2 be two distances. Let
0 ≤ p2 < p1 ≤ 1. A family of functions F is said to be (d1, d2, p1, p2)-sensitive
if for every f ∈ F the following two conditions hold;

1. If d(x, y) ≤ d1 then Pr[f(x) = f(y)] ≥ p1.

2. If d(x, y) ≥ d2 then Pr[f(x) = f(y)] ≤ p2.

P1

P2

d2d1

Distance

Probability
of being
hashed to
the same
bucket
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Family of MinHash Signatures

Consider the Jaccard distance measure for finding similar sets in a collection
of sets S.

Min-Hash Signature Family
Let 0 ≤ d1 < d2 ≤ 1. The family of minhash-signatures is
(d1, d2, p1 = 1− d1, p2 = 1− d2)-sensitive.

Proof: Suppose that the Jaccard similarity between two sets is at least s.
Then their Jaccard distance is at most d1 = 1− s. The probability that they
will be hashed to the same bucket by minhash signatures is
≥ p1 = s = 1− d1.

Now suppose that the Jaccard similarity is at most s′. Then their Jaccard
distance is at least d2 = 1− s′. The probability that the minhash signatures
map them to the same bucket is at most p2 = s′ = 1− d2.

2

25



LSH Family for Hamming Distance

Consider two d-dimensional Boolean vectors u and v.
HAM(u, v)= Number of coordinates in which u and v differ
Let fi(x) = i-th coordinate of u.
For a randomly chosen index i, Pr[fi(u) = fi(v)] = 1− HAM(u,v)

d

Example:
u = 1 0 0 1 1 0 1 1
v = 1 1 0 0 1 1 1 1

Pr[fi(u) = fi(v)] = 1− HAM(u,v)
d

= 1− 3
8

= 5
8

Sensitive-family for Hamming distance
For any d1 < d2, F = {f1, f2, . . . , fd} is a
(d1, d2, 1− d1/d, 1− d2/d)-sensitive family of functions.

Proof: Let p1 = 1− d1/d and p2 = 1− d2/d.
A family of functions F is said to be (d1, d2, p1, p2)-sensitive if for every
fi ∈ F the following two conditions hold:

1. If HAM(u, v) ≤ d1 then Pr[fi(u) = fi(v)] ≥ p1
2. If HAM(u, v) ≥ d2 then Pr[fi(u) = fi(v)] ≤ p2

2 26



LSH Family for Near Neighbors in 2D

P= Set of points in 2D and ∆ > 0 a parameter.
Define hash function fl by a line l with random orientation as follows:

Partition l into intervals of equal size 2∆.
Orthogonally project all points of P on l.
Let fl(x) be the interval in which x ∈ P projects to.

l

2∆

∆ ∆
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LSH Family for Near Neighbors

Sensitive Family via Projection on a Random Line
The family of hash functions with respect to the projection on a random line
with intervals of size 2∆ is a (∆, 4∆, 1/2, 1/3)-sensitive family.

Proof: Assume l is horizontal.

We first show that if d(x, y) ≤ ∆, then Pr[fl(x) = fl(y)] ≥ 1/2.

Let m be the mid-point of the interval fl(x).

In fl(x), with probability 1/2 the projection of x lies to the left of m and with
probability 1/2, the projection of y lies to the right of projection of x.

=⇒ projection of y lies in fl(x) (i.e., fl(x) = fl(y)) as d(x, y) ≤ ∆.

Thus with probability 1/4, projections of x and y lie in fl(x) where the
projection of x is to the left of m and the projection of y is to the right of the
projection of x.

Same reasoning holds when fl(x) is to the right of m and the projection of y
is to the left of the projection of x.

Since the above two cases are mutually exclusive, Pr[fl(x) = fl(y)] ≥ 1/2. 28



Proof (contd.)

Now consider the case when d(x, y) > 4∆.

l

2∆

θ

x

y

d(x, y) cos θ ≤ 2∆

We want to show that Pr[fl(x) = fl(y)] ≤ 1/3.

Let θ be the angle of the line passing through x and y with respect to l.

For the projections of x and y to fall in the same interval, we will need that
d(x, y) cos θ ≤ 2∆.

For this to happen cos θ ≤ 1/2, or the angle the line xy forms with the
horizontal needs to be between 60◦ and 90◦.

This has at most 1/3-rd chance.
2
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AND-OR Family



AND-Family

Let F be (d1, d2, p1, p2)-sensitive family.
Construct a new family G by an AND-construction as follows:

AND-Family: Each function g ∈ G is formed from a set of r independently
chosen functions of F , say f1, f2, . . . , fr for some fixed value of r.
Now, g(x) = g(y) if and only if for all i = 1, . . . , r, fi(x) = fi(y).

AND-Family
G is an (d1, d2, p

r
1, p

r
2)-sensitive AND family.

Proof: This is the probability of all the r independent events to occur
simultaneously.
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OR-Family

OR-Family: Each member g in G is constructed by taking b independently
chosen members f1, f2, . . . , fb from F .
Now g(x) = g(y) if and only if fi(x) = fi(y) for at least one of the members in
{f1, f2, . . . , fb}.

OR-Family

G is an (d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive OR family.

Proof: Estimate the probability that none of the b-events occur and then look
at the complementary event.

31



Probabilistic Amplification

F1 (AND) F2 (OR) F3 (AND-OR) F4 (OR-AND)
p pr 1− (1− p)b 1− (1− pr)b (1− (1− p)r)b

0.2 0.0001 0.6723 0.0079 0.0717
0.4 0.0256 0.9222 0.1216 0.4995
0.6 0.1296 0.9897 0.5004 0.8783
0.7 0.2401 0.9975 0.7446 0.9601
0.8 0.4096 0.9996 0.9282 0.9920
0.9 0.6561 0.9999 0.9951 0.9995

Table 1: Illustration of four families obtained for different values of p. F1 is the AND
family for r = 4. F2 is OR family for b = 5. F3 is the AND-OR family for r = 4 and
b = 5. F4 is the OR-AND family for r = 4 and b = 5.
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Probabilistic Amplification Examples

We can apply the AND-OR amplification technique for any sensitive family.
For example,

1. F be a (d1, d2, p1 = 1− d1, p2 = 1− d2)-sensitive minhash function
family for similarity of sets.

2. Hamming distance (d1, d2, 1− d1/d, 1− d2/d)-sensitive family for finding
similar Boolean strings.

3. Projection on a random line (∆, 4∆, 1/2, 1/3)-sensitive family for finding
near points.

4. Metric Property→ Sensitive Family→ Probabilistic Amplification
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Fingerprints



Matching Fingerprints

Fingerprints consists of minutia points and patterns that form ridges and
bifurcations

Ridge Ending

Bifurcations

Ridge Dot
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Fingerprint with an overlay grid

Fingerprint mapped to a normalized grid cell
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Minutia of two fingerprints

Statistical Analysis from fingerprint analyst:

1. Pr(minutia in a random grid cell of a fingerprint) = 0.2

2. Pr(given two fingerprints of the same finger and that one fingerprint has
a minutia in a grid cell, other fingerprint has the minutia in that cell)
= 0.85

3. Pick 3 random grid cells and define a (hash) function f that sends two
fingerprints to the same bucket if they have minutia in each of those
three cells

4. Pr(two arbitrary fingerprints will map to the same bucket by f )
= 0.26 = 0.000064

5. Pr(f maps the fingerprints of the same finger to the same bucket)
= 0.23 × 0.853 = 0.0049
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Probabilistic Amplification

Suppose we have 1000 such functions and we take ‘OR’ of these functions

1. Pr(two fingerprints from different fingers map to the same bucket)
= 1− (1− 0.000064)1000 ≈ 0.061

2. Pr(two fingerprints of the same finger map to the same bucket)
= 1− (1− 0.0049)1000 ≈ 0.992

Take two groups of 1000 functions each and report a match if it’s a match in
both the groups.

1. Pr(two fingerprints from different fingers map to the same bucket)
≈ 0.0612 = 0.0037

2. Pr(two fingerprints of the same finger map to the same bucket)
≈ 0.9922 = 0.984
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Conclusions

LSH has abundance of applications
(Image Similarity, Documents Similarity, Nearest Neighbors, Similar
Gene-Expressions, . . . )
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