Maximum Weight Independent Set

Anil Maheshwari
anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

Outline

Problem Statement

A Greedy Randomized Algorithm

Improvements

References

Problem Statement

MWIS in Graphs

Input: An undirected graph $G=(V, E)$ where each vertex has a positive weight $w: V \rightarrow \Re^{+}$.

Output: A subset $S \subseteq V$ such that
(a) Independent: No two vertices in S are connected by an edge
(b) Maximality: Among all such independent sets, S has the maximum total weight, where $w t(S)=\sum_{s \in S} w(s)$.

Complexity Results on MWIS Problem

NP-Hardness Results:

- Decision version of MWIS problem is NP-Hard, both for unweighted and weighted graphs
- NP-Hard for cubic-graphs
- NP-Hard to approximate within a factor of $n^{1-\epsilon}$, for any $0<\epsilon<1$, [Hastad 2001]
- Can be solved in linear time for trees, bounded tree-width graphs, ...

A Greedy Randomized Algorithm

Greedy Randomized Algorithm

Consider the following straightforward greedy algorithm for approximating MWIS of an undirected weighted graph $G=(V, E)$.

Input: Graph $G=(V, E)$ on n vertices with $w: V \rightarrow \Re^{+}$.
Output: A set S that approximates the MWIS.
Step 1: Compute an ordering of vertices in V by using a uniform at random permutation. WLOG, let the ordering be $\left(v_{1}, \ldots, v_{n}\right)$.
Step 2: $S \leftarrow \emptyset$
Step 3: For each vertex v_{i} in order do If none of its neighbors are in $S, S \leftarrow S \cup\left\{v_{i}\right\}$
Step 4: Return S

An Illustration

Figure 1: $S=\{1,2,3\}$

Observations on Greedy Algorithm

Observation 1

The set of vertices in S forms an independent set of G.

Observation 2

The algorithm is oblivious to weights of vertices.

Observation 3

The algorithm runs in $O(|V|+|E|)$ time.

Observations on Greedy Algorithm (contd.)

Observation 4

Let $v \in V$ be an arbitrary vertex of G and let its degree be $\operatorname{deg}(v)$. Then

$$
\operatorname{Pr}(v \in S) \geq \frac{1}{\operatorname{deg}(v)+1}
$$

where probability is over the random orderings of vertices in V.
Proof: Vertex v is placed in S if none of v 's neighbors come before v in the ordering.

This occurs with probability $=\frac{1}{\operatorname{deg}(v)+1}$
Moreover, it is possible that a neighbor w of v comes before v in the ordering, but it wasn't placed in S as one of w 's neighbor (other than v) was in S.

Thus, $\operatorname{Pr}(v \in S) \geq \frac{1}{\operatorname{deg}(v)+1}$

Observations on Greedy Algorithm (contd.)

Observation 5

$$
E\left[\sum_{v \in S} w(v)\right] \geq \sum_{v \in V} \frac{w(v)}{\operatorname{deg}(v)+1}
$$

Proof: Set up indicator random variable X_{v} for each vertex v, where
$X_{v}=\left\{\begin{array}{l}1, \text { if } v \in S \\ 0, \text { otherwise }\end{array}\right.$
Note that $E\left[X_{v}\right]=\operatorname{Pr}\left(X_{v}=1\right)=\operatorname{Pr}(v \in S) \geq \frac{1}{\operatorname{deg}(v)+1}$
Now

$$
\begin{aligned}
E\left[\sum_{v \in S} w(v)\right] & =E\left[\sum_{v \in V} X_{v} w(v)\right] \\
& =\sum_{v \in V} E\left[X_{v} w(v)\right]=\sum_{v \in V} w(v) E\left[X_{v}\right] \\
& \geq \sum_{v \in V} \frac{w(v)}{\operatorname{deg}(v)+1}
\end{aligned}
$$

Remarks on Observation 5

Remark 1

If max degree of any vertex in G is $\leq \Delta, E\left[\sum_{v \in S} w(v)\right] \geq \frac{1}{\Delta+1} \sum_{v \in V} w(v)$

Remark 2

Let I be any independent set of G. Then

$$
E\left[\sum_{v \in S} w(v)\right] \geq \sum_{v \in V} \frac{w(v)}{\operatorname{deg}(v)+1} \geq \sum_{v \in I} \frac{w(v)}{\operatorname{deg}(v)+1}
$$

Remark 3

Let I^{*} be a max weight independent set of G. Then $E\left[\sum_{v \in S} w(v)\right] \geq \sum_{v \in I^{*}} \frac{w(v)}{\operatorname{deg}(v)+1}$

Improvements

Recap

Step 1: Compute an ordering of vertices in V by using a uniform at random permutation. WLOG, let the ordering be $\left(v_{1}, \ldots, v_{n}\right)$.
Step 2: $S \leftarrow \emptyset$
Step 3: For each vertex v_{i} in order do If none of the neighbors of v_{i} are in $S, S \leftarrow S \cup\left\{v_{i}\right\}$
Step 4: Return S

Remark 3

Let I^{*} be a max weight independent set of G. Then
$E\left[\sum_{v \in S} w(v)\right] \geq 1 \cdot \sum_{v \in I^{*}} \frac{w(v)}{\operatorname{deg}(v)+1}$
The value 1 is called the recoverable value and we will see a method of Feige and Reichman [2014] to get a better value.

Upper Bound on Recoverable Value

Max Recoverable Value

The maximum value of r in the expression $E\left[\sum_{v \in S} w(v)\right] \geq r \cdot \sum_{v \in I} \frac{w(v)}{\operatorname{deg}(v)+1}$ should be strictly less than 4 (unless $\mathbf{P}=\mathbf{N P}$).

Proof: Note that for the cubic graphs (i.e. graphs where each vertex has degree 3), the MWIS problem is NP-Hard. This also holds for unweighted cubic graphs.
If $r=4$ in $E\left[\sum_{v \in S} w(v)\right] \geq r \cdot \sum_{v \in I^{*}} \frac{w(v)}{\operatorname{deg}(v)+1}$, then we have that
$E\left[\sum_{v \in S} w(v)\right] \geq r \cdot \sum_{v \in I^{*}} \frac{w(v)}{4}=\sum_{v \in I^{*}} w(v)$.
Thus we may obtain an optimal MWIS in polynomial time for cubic graphs.
This is only feasible if $\mathbf{P}=\mathbf{N P}$.

FR14 Algorithm

Input: Graph $G=(V, E)$ on n vertices with $w: V \rightarrow \Re^{+}$.
Output: A set S that approximates the MWIS.
Step 1: Compute an ordering of vertices in V by using a uniform at random permutation. WLOG, let the ordering be $\left(v_{1}, \ldots, v_{n}\right)$.

Step 2: $F \leftarrow \emptyset$
Step 3: For each vertex v_{i} in order do
If at most one of the neighbors of v_{i} has been seen so far, $F \leftarrow F \cup\left\{v_{i}\right\}$

Step 4: Compute a MWIS S of the induced graph on F.
Step 5: Return S

An Illustration

Figure 2: $F=\{1,2,3,4,5,6\}$ and $S=\{1,3,4,5,6\}$

Observations on FR14 Algorithm

Observation 1

The induced graph on F obtained at the end of Step 3 in the FR14-Algorithm is a forest.

Proof: Consider any cycle C in G.
Let v be the last vertex in C in the ordering in Step 1.
Note that $v \notin F$ as both neighbors of v have been seen before v.
Thus, the induced graph of F is acyclic.

Observations on FR14 Algorithm (contd.)

Observation 2

MWIS of the induced graph on F obtained in Step 3 in the FR14-Algorithm can be computed in linear time.

Proof: Think of dynamic programming on a rooted tree.
Consider a vertex v and let $I(v)$ represents the weight of the MWIS of the subtree rooted at v.

MWIS for the subtree rooted at v is one of the following two types:
Case 1: $v \in$ MWIS: $I(v)=w t(v)+\sum_{x \in\{\text { grandchild of } v\}} I(x)$
Case 2: $v \notin$ MWIS: $I(v)=\sum_{x \in\{\text { child of } v\}} I(x)$

Analysis of FR14 Algorithm

Claim

The weight of the independent S returned by the FR14-Algorithm satisfies
$E\left[\sum_{v \in S} w(v)\right] \geq 2 \cdot \sum_{v \in I^{*}} \frac{w(v)}{\operatorname{deg}(v)+1}$, where I^{*} is a maximum weight independent set of G.

Proof: Let I be an independent set of G.
Observe that $I \cap F$ is an independent set of induced graph of F.
Since S is a MWIS of the induced graph of F (see Step 4), we have

$$
E\left[\sum_{v \in S} w(v)\right] \geq E\left[\sum_{v \in I \cap F} w(v)\right]
$$

Consider a vertex $v \in I$.
When does v makes contribution to the sum $E\left[\sum_{v \in I \cap F} w(v)\right]$?

Analysis of FR14 Algorithm (contd.)

When does v makes contribution to the sum $E\left[\sum_{v \in I \cap F} w(v)\right]$?
Only if, it is included in F.
$\operatorname{Pr}(v \in F)=\frac{2}{\operatorname{deg}(v)+1}$ (it has to be either the 1st or the 2nd vertex among its neighbors in the permutation ordering to be included in F)
We have $E\left[\sum_{v \in I \cap F} w(v)\right]=E\left[\sum_{v \in I} w(v) X_{v}\right]$, where X_{v} is indicator r.v.
stating whether $v \in F$ or $v \notin F$.
Thus, $E\left[\sum_{v \in S} w(v)\right] \geq E\left[\sum_{v \in I} w(v) X_{v}\right]=\sum_{v \in I} w(v) E\left[X_{v}\right]=\sum_{v \in I} w(v) \frac{2}{\operatorname{deg}(v)+1}$
Observe that we can replace the independent set I by the MWIS I^{*} of G, and we have $E\left[\sum_{v \in S} w(v)\right] \geq 2 \cdot \sum_{v \in I^{*}} \frac{w(v)}{\operatorname{deg}(v)+1}$

References

References

1. U. Feige and D. Reichman, Recoverable values for independent sets. Random Structures \& Algorithms, 2014.
2. Johan Hastad, Some optimal inapproximability results. Journal of the ACM, 48(4):798-859, 2001.
3. Tim Roughgarden, Beyond Worst Case Analysis Lecture Notes, 2014.
