
Multiplicative-Weight Update Method

Anil Maheshwari

anil@scs.carleton.ca
School of Computer Science
Carleton University
Canada

1

Outline

Motivating Problem

MWU Method

Potential Function

Randomization

±1 Costs

Generalizations

Applications

Linear Programming

ρ-Bounded Oracle for Set Cover LP

Conclusions

2

Motivating Problem

How to be an Expert?

Task: Predict whether the stock index will go ↑ or ↓ at the end of each day.

Model:

1. Access to n experts (newspapers, stock briefs, . . .)

2. Correct Prediction: Reward of $0 for that day.

3. Wrong Prediction: Costs us $1 for that day.

Problem: Devise an algorithm that predicts for each day.
Suppose we are at day t, where t ∈ {1, . . . , T}.
Algorithm can utilize previous predictions for t− 1 days + experts advises for
days 1, . . . , t

Objective: At the end of T days, we want to be competitive with respect to
any expert. Our cost (loss) is not significantly higher than the cost of any
expert (including the best expert).

3

WHY?

Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein
4th Edition, MIT Press, 2022.
Chapter 33: Machine Learning
33.1 Clustering
33.2 Multiplicative Weights Algorithm
33.3 Gradient Descent

Numerous Applications:
- Replaces solving linear programs for important class of problems.
- Applications in game theory
- Online Learning
- Approximating numerous combinatorial optimization problems
- Fastest algorithm for Network Flow

4

Warmup: ≥ 1 Real Experts

Extra Knowledge

• Among the n experts there is at least one expert who is always correct.

• We don’t know their identity.

5

≥ 1 Real Experts

Extra Knowledge: The best expert(s) always makes correct prediction.

Let the set of experts be E = {1, . . . , n}

For each day t := 1 to T do:

Step 1: Among all the remaining experts in E, poll them to find the
prediction of the majority of them for that day. Record that as
the prediction of the algorithm.

Step 2: Observe the true outcome at the end of the day. Discard all
those experts that predicted wrong from E from future
considerations.

6

Warmup (contd.)

#Wrong Predictions
Algorithm makes at most dlog2 ne wrong predictions

Proof.
At least half of the remaining experts are discarded for future consideration
when the algorithm makes an incorrect prediction.

mistakes 0 1 2 3 · · ·
remaining experts n ≤ n/2 ≤ n/4 ≤ n/8 · · ·

7

MWU Method

Multiplicative-Weight Update Method - Idea

Extra Knowledge

• Among the n experts there is at least one expert who makes fewer than
m mistakes over the period of T days.

• We call them the best experts.

• We don’t know the identity of the best experts.

8

Multiplicative-Weight Update Method - Idea

Extra Knowledge: The best expert(s) makes ≤ m mistakes over the period of
T days.

Let the set of experts be E = {1, . . . , n}
For each expert i, set its weight w1

i = 1

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts. Sum
total the weights of all the experts that predict ↑ (respectively,
↓). Whichever of the two sums is higher is the prediction for
the day t.

Step 2: Observe the true outcome at the end of the day t

Step 3: For all the experts i that predicted wrongly, their weight is set
to wt+1

i = wti/2. For all others, wt+1
i = wti .

9

Potential Function

Potential Function

Potential Function Φt

Define the potential function Φt for day t ∈ {1, . . . , T} to be the sum total of

the weights of all the experts at the start of the day t, i.e. Φt =
n∑
i=1

wti

Observations:

1. Φ1 =
n∑
i=1

w1
i =

n∑
i=1

1 = n

2. If the algorithm makes a wrong prediction on day t, Φt+1 ≤ 3
4
Φt

3. If the algorithm has made M mistakes in T days, its total weight at the
end of day T , ΦT+1 ≤

(
3
4

)M
Φ1 =

(
3
4

)M
n

10

Observation 2

Bounding Potential Function

If the algorithm makes a wrong prediction on day t, Φt+1 ≤ 3
4
Φt.

Proof.

Define Φt(↑) =
∑

expert i predicts ↑
wti , and

Φt(↓) =
∑

expert i predicts ↓
wti .

We know, Φt = Φt(↑) + Φt(↓).

Assume Φt(↑) ≥ Φt(↓) =⇒ Φt(↑) ≥ 1
2
Φt and Φt(↓) ≤ 1

2
Φt.

Since the algorithm makes a wrong prediction on the day t,
Φt+1 = 1

2
Φt(↑) + Φt(↓).

Observe that Φt+1 is maximized when Φt(↑) = Φt(↓).
=⇒ Φt+1 ≤ 1

4
Φt + 1

2
Φt = 3

4
Φt.

11

Bounding Potential Function

Assume that the Best Expert is i (we don’t know its identity).

Bounds on Potential Function

Weight of the expert i at the end of day T is ≥ (1
2
)m.

Therefore,
(

1
2

)m ≤ ΦT+1 ≤
(

3
4

)M
n

Proof.

Weight of expert i can’t go lower than
(

1
2

)m, as it can make at most m
mistakes.
Since ΦT+1 is sum of weights, including the best experts weight,(

1
2

)m ≤ ΦT+1.

Observe, ΦT+1 ≤ 3
4
ΦT ≤

(
3
4

)2
ΦT−1 ≤ · · · ≤

(
3
4

)M
Φ1 =

(
3
4

)M
n.

12

Number of mistakes

Bounding number of mistakes
The algorithm makes at most 2.41(m+ logn) mistakes.

Proof.

We had
(

1
2

)m ≤ ΦT+1 ≤
(

3
4

)M
n.

Take log’s:

−m ≤ M log

(
3

4

)
+ logn

−M log

(
3

4

)
≤ m+ logn

M log

(
4

3

)
≤ m+ logn

M ≤ 2.41(m + logn)

13

Replacing 1
2

Choose η ∈ (0, 1
2
]

Let the set of experts be E = {1, . . . , n}
For each expert i, set its starting weight w1

i = 1

For each day t := 1 to T do:

Step 1: Find the weighted majority prediction of the experts. Sum
total the weights of all the experts that predict ↑ (respectively,
↓). Whichever of the two sums is higher is the prediction for
the day t.

Step 2: Observe the true outcome at the end of the day t

Step 3: For all the experts i that predicted wrongly, their weight is set
to wt+1

i = (1− η)wti . For all others, wt+1
i = wti .

14

Upper Bounding the Potential Function

Suppose the algorithm made a mistake on the day t, i.e., the majority
weighted prediction was incorrect.

An Upper Bound

Φt+1 ≤ (1− η
2
)Φt.

Proof.
Assume weighted majority prediction was in favor of ↑.

Note Φt(↑) ≥ 1
2
Φt ≥ Φt(↓).

Given the assumption, we have

Φt+1 = Φt(↓) + (1− η)Φt(↑)

= Φt(↓) + Φt(↑)− ηΦt(↑)

≤ Φt − η

2
Φt

= (1− η

2
)Φt

15

Analysis

We have assumed that the algorithm makes at most M mistakes and that the
best expert makes at most m mistakes over T days.

New Bound

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

Proof.

We have (1− η)m ≤ ΦT+1 ≤ (1− η
2
)Mn.

Take log’s and use −η − η2 ≤ ln(1− η) ≤ −η for η ∈ [0, 1
2
].

m ln(1− η) ≤ M ln(1− η

2
) + lnn

−m(η + η2) ≤ −M η

2
+ lnn

M
η

2
≤ lnn+ (η + η2)m

M ≤ 2

η
lnn + 2(1 + η)m

16

An Example

For any η ∈ (0, 1
2
], we have M ≤ 2(1 + η)m+ 2

η
logn

Example: Two experts A and B.
A predicts (↑, ↓) correctly only on even numbered days
B predicts (↑, ↓) correctly only on odd numbered days

Best Expert: Wrong half the time.

How many days the Algorithm makes wrong predictions?

17

Randomization

Improvements (contd.)

How to remove the multiplicative factor of 2 in M ≤ 2(1 + η)m+ 2
η

logn?

Use Randomization

18

Generalizations

- So far, we have had two actions/events/outcomes/possibilities (↑, ↓).

- Assume that we have Q possible events.

- For any day t, one of the possible Q events occur.

- For each expert i, and for each possible event q ∈ Q for day t, the loss
(cost) incurred to expert i on day t is given by mt

i(q) ∈ [0, 1].

- Note that the losses don’t have to be 0 or 1, but can be any real number
between 0 and 1.

- To keep the notation simple, we will say that the loss of expert i on the day t
is mt

i.

19

Objectives

Let mt
i ∈ [0, 1] denote the loss of expert i ∈ {1, . . . , n} on day t ∈ {1, . . . , T}

Objective: Algorithm to be competitive against the cost incurred by the best
expert. Assume i is the (unknown) best expert.

Its total cost over T days is
T∑
t=1

mt
i.

M t = Expected cost that the algorithm incurs on the day t.

Our algorithm should have the following guarantee:

T∑
i=1

M t ≤ lnn
η

+ (1 + η)
T∑
t=1

mt
i

Total expected cost over T days is within an additive factor lnn
η

and a multi-
plicative factor (1 + η) of the best expert.

20

Randomized MWU

Multiplicative Weight Update Method

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its initial weight w1
i = 1.

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti

For each expert i, compute the probability pti =
wti
Φt

.

Step 2: Choose an expert based on their probabilities and predict
accoording to its chosen action (among Q possible actions).
Suppose q ∈ Q is the chosen action on the day t.

Step 3: Update Weights: For each expert i set wt+1
i = wti(1− ηmt

i).
Note mt

i = mt
i(q) ∈ [0, 1].

21

Analysis - Upper Bound

Expected loss M t

The expected loss M t that the algorithm incurs on the day t is given by

M t =
n∑
i=1

ptim
t
i = 〈pt ·mt〉, (1)

where pt = (pt1, p
t
2, . . . , p

t
n) and mt = (mt

1,m
t
2, . . . ,m

t
n) and their dot

product is 〈pt ·mt〉

22

Analysis (contd.)

Potential Function

For any t ∈ {1, . . . , T}: Φt+1 ≤ Φte−ηM
t

.

Moreover, ΦT+1 ≤ ne
−η

T∑
t=1

Mt

Proof.

Φt+1 =
n∑
i=1

wt+1
i =

n∑
i=1

wti(1− ηmt
i) =

n∑
i=1

wti − η
n∑
i=1

wtim
t
i

= Φt − η
n∑
i=1

Φtptim
t
i = Φt(1− η〈pt ·mt〉)

≤ Φte−η〈p
t·mt〉 = Φte−ηM

t

Using induction on t, we obtain

ΦT+1 ≤ Φ0e
−η

T∑
t=1

Mt

= ne
−η

T∑
t=1

Mt

23

Analysis - Lower Bound

Lower Bound

For any expert i, ΦT+1 ≥ (1− η)

T∑
t=1

mti

Proof.

Since all mt
i ∈ [0, 1], wti ≥ 0.

=⇒ Φt+1 ≥ wt+1
i for any individual weight as Φt+1 =

n∑
i=1

wt+1
i

Note: For ε ∈ [0, 1], 1− εx ≥ (1− ε)x if x ∈ [0, 1]

Using the update rule of wt+1
i , we have

ΦT+1 ≥ wT+1
i = wTi (1− ηmT

i) = w1
i

T∏
t=1

(1− ηmt
i) ≥ (1− η)

T∑
t=1

mti

24

Putting Lower & Upper Bounds Together

Putting upper and lower bounds for ΦT+1 we have

ne
−η

T∑
t=1

Mt

≥ ΦT+1 ≥ (1− η)

T∑
t=1

mti (2)

Take log’s and divide by η:

lnn

η
−

T∑
t=1

M t ≥ ln(1− η)

η

T∑
t=1

mt
i (3)

This is equivalent to

T∑
t=1

M t ≤ lnn

η
− ln(1− η)

η

T∑
t=1

mt
i (4)

25

Putting Lower & Upper Bounds Together (contd.)

Use η ∈ [0, 1
2
], −η − η2 ≤ ln(1− η) and we obtain:

T∑
t=1

M t ≤ lnn

η
+
η + η2

η

T∑
t=1

mt
i (5)

Equivalently,

T∑
t=1

M t ≤ lnn

η
+ (1 + η)

T∑
t=1

mt
i

26

±1 Costs

MWU with costs in [−1, 1]

The costs of each expert can be positive or negative, i.e. mt
i ∈ [−1, 1]. Use

the same algorithm as for the cost [0, 1]:

MWU with costs in [−1, 1]

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
].

For each expert i, set its initial weight w1
i = 1.

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti .

For each expert i, compute pti =
wti
Φt

.

Step 2: Choose an expert based on their probabilities and predict
according to the chosen expert.

Step 3: Update Weights: For each expert i set wt+1
i = wti(1− ηmt

i).

27

Analysis - Upper Bound

Upper Bound

ΦT+1 ≤ ne
−η

T∑
t=1

Mt

Proof.

The expected cost of the algorithm on day t: M t =
n∑
i=1

ptim
t
i = 〈pt ·mt〉

The upper bound for Φt+1 follows the same analysis:

Φt+1 =
n∑
i=1

wt+1
i =

n∑
i=1

wti(1− ηmt
i) ≤ Φte−ηM

t

And using induction on t we have ΦT+1 ≤ ne
−η

T∑
t=1

Mt

28

Analysis - Lower Bound

Lower Bound

ΦT+1 ≥ (1− η)

∑
mt
i
≥0

mti

(1 + η)

−
∑

mt
i
<0

mti

Proof.

Since mt
i ∈ [−1, 1], we have 1− ηmt

i ≥ 0.
Thus, wti ≥ 0 =⇒ Φt+1 ≥ wt+1

i for any individual weight.

From the update rule of wt+1
i : ΦT+1 ≥ wT+1

i =
T∏
t=1

(1− ηmt
i).

Group for each day the positive mt
i ’s and the negative mt

i ’s:

ΦT+1 ≥ (1− η)

∑
mt
i
≥0

mti

(1 + η)

−
∑

mt
i
<0

mti

29

Upper+Lower Bound

Note: For ε ∈ [0, 1]:
If x ∈ [0, 1], (1− ε)x ≤ 1− εx.
If x ∈ [−1, 0], (1 + ε)−x ≤ 1− εx.

ne
−η

T∑
t=1

Mt

≥ (1− η)

∑
mt
i
≥0

mti

(1 + η)

−
∑

mt
i
<0

mti

Take log’s and divide by η:

lnn

η
−

T∑
t=1

M t ≥ ln(1− η)

η

∑
mti≥0

mt
i −

ln(1 + η)

η

∑
mti<0

mt
i

T∑
t=1

M t ≤ lnn

η
− ln(1− η)

η

∑
mti≥0

mt
i +

ln(1 + η)

η

∑
mti<0

mt
i

30

Upper+Lower Bound (contd.)

Use, η + η2 ≥ − ln(1− η) and ln(1 + η) ≥ η − η2, for η ∈ [0, 1
2
].

T∑
t=1

M t ≤ lnn

η
+ (1 + η)

∑
mti≥0

mt
i + (1− η)

∑
mti<0

mt
i

Note: (η − η2)
∑
mti<0

mt
i ≥ ln(1 + η)

∑
mti<0

mt
i because of negative values.

On expanding, we obtain

T∑
t=1

M t ≤ lnn

η
+ η

T∑
t=1

|mt
i|+

T∑
t=1

mt
i

Since |mt
i| ≤ 1, we have

T∑
t=1

M t ≤ lnn

η
+ ηT +

T∑
t=1

mt
i

31

Observations

Cost of MWU

By setting η =
√

lnn
T

in
T∑
t=1

M t ≤ lnn
η

+ ηT +
T∑
t=1

mt
i, we obtain

T∑
t=1

M t ≤ 2
√
T lnn+

T∑
t=1

mt
i

Interpretation: The cost of the MWU algorithm is off by an additive factor that
is proportional to the square root of the product of the number of days and
the number of experts compared to the best expert.

Average Error: Consider the average error on each day (divided by T):

1
T

T∑
t=1

M t ≤ 2
√

lnn
T

+ 1
T

T∑
t=1

mt
i

Observe that as T increases, the average error drops down. Therefore, the
MWU method can learn from experts reasonably well when executed over
several days.

32

Generalizations

MWU with costs in [−l, ρ]

The costs of each expert is in mt
i ∈ [−l, ρ], where l < ρ.

MWU with costs in [−l, ρ]

Set of experts E = {1, . . . , n}.
Let η be any real number in [0, 1

2
]

For each expert i, set its weight w1
i = 1

For each day t := 1 to T do:

Step 1: Define Φt =
n∑
i=1

wti . For each expert i, compute pti =
wti
Φt

Step 2: Choose an expert based on their probabilities and predict
according to the chosen expert

Step 3: Update Weights: For each expert i set

wt+1
i =

w
t
i(1− η)

mti
ρ , if mt

i ≥ 0

wti(1 + η)
−
mti
ρ , if mt

i < 0

33

Analysis

As mt
i/ρ ∈ [−1,+1], we have

Upper Bound

ΦT+1 ≤ ne
−η

T∑
t=1

Mt

ρ

Lower Bound

ΦT+1 ≥ (1− η)

∑
mt
i
≥0

mti
ρ

(1 + η)

−
∑

mt
i
<0

mti
ρ

34

Results

Theorem
T∑
t=1

M t ≤ ρ lnn

η
+ (1 + η)

∑
mti≥0

mt
i + (1− η)

∑
mti<0

mt
i

Corollary

If η ≤ min(1
2
, ε

4ρ
) for some error parameter ε, after T = 16ρ2 lnn

ε2
days, the

average expected loss is given by

1

T

T∑
t=1

M t ≤ ε+
1

T

∑
t

mt
i

35

Applications

Applications

Numerous applications including:

1. 2-Player Zero-Sum Games

2. Is the linear system Ax ≥ b, x ≥ 0, feasible?

3. Multi-commodity Flow Problems: Give k source-sink pairs, and
capacities on edges of a graph, maximize the total flow from each si to
ti, respecting the capacity constraint on each edge.

4. LP for bounded number of variables.

5. Approximate set cover.

6. Ada Boost algorithm in ML.

7. Winnow Algorithm - Hedge Algorithm - Weighted Majority Algorithm.

36

Linear Programming

Let A be a n×m matrix, b is a vector of length m,
P is the convex feasibility region.

Approximate Abstract Feasibility Problem
Let ε ≥ 0 be an error parameter.

If z ∈ P and Az ≥ b is feasible
- Report x ∈ P such that ∀i ∈ {1, . . . , n}: Aix ≥ bi − ε

Else, report infeasibility.

Typically, LP problems have an objective function to minimize/maximize.

There are standard methods that can turn an optimization problem to a
decision problem (i.e. the feasibility problem).

Moreover, we assume, we are given an ρ-bounded oracle.

37

ρ-bounded oracle

The ρ-bounded oracle takes as input a probability distribution

p = (p1, . . . , pn), where
m∑
i=1

pi = 1, on the rows of A and returns the following:

ρ-bounded oracle

If x ∈ P and pTAx ≥ pT b is feasible,
return x∗ ∈ P such that ∀i : |Aix∗ − bi| ≤ ρ.
Otherwise, return that the system is infeasible.

Note: pTAx ≥ pT b is a single inequality.
Its a linear combination of rows of A given by the vector p.
Finding x ∈ P that satisfies a single constraint pTAx ≥ pT b is an easier
problem than satisfying all the constraints of Ax ≥ b.

Next, we apply the MWU method for solving LPs.
Each constraint (i.e., row i of A) is associated to an expert i, and its
cost/regret for day t is given by mt

i = 1
ρ
(Aix

t − bi).

38

MWU Method for LP

Step 1: Fix an η ∈ [0,min(1
2
, ε

2ρ
)] and set w1 = (1, . . . , 1).

Step 2: For t = 1 to T = 4 ρ
2 lnn
ε2

days do:

1. Compute pt = (
wt1
Φt
, . . . ,

wtn
Φt

), where Φt =
n∑
i=1

wti .

2. Execute the ρ-bounded oracle for pt. It either returns that
the system is infeasible and we STOP or returns the
vector xt.

3. Compute the costs of each expert i by evaluating
mt
i = 1

ρ
(Aix

t − bi). (Note mt
i ∈ [−1, 1].)

4. Update weights for each expert i: wt+1
i = wti(1− ηmt

i).

Step 3: If we didn’t report infeasibility during the T days of execution,

return x̄ = 1
T

T∑
t=1

xt as an approximation to the LP.

39

Observations

1. If Aixt ≥ bi, then mt
i ≥ 0 and the i-th constraint is satisfied.

If Aixt < bi, then mt
i < 0.

=⇒ for the rows of A for which the constraints are satisfied their
weights will be smaller compared to the rows for which the constraints
are not satisfied.

2. In the next round the unsatisfied rows (experts) will get higher
probabilities compared to the satisfied rows. The more unsatisfied the
row is, higher its probability, and bigger its proportion in pTAx ≥ pT b in
the call to ρ-bounded oracle. Hence it has higher chances to get
satisfied in future rounds.

3. Suppose we didn’t report infeasibility on any of the T days of execution

of MWU Method. We claim that x̄ = 1
T

T∑
t=1

xt, which is a convex

combination (average) of T feasible vectors, is within the polytope P.

40

Analysis (Contd.)

Claim
Assume that in Step 2, the MWU method didn’t report infeasibility for the
entire run of the algorithm. Then, x̄ ∈ P

Proof.

By definition, x̄ = 1
T

T∑
t=1

xt, where each xt ∈ P by construction.

Convex combination of x1, . . . , xT is also in the convex region P.

From the analysis of MWU Method we know that the expected cost of this
algorithm is bounded with respect to the cost of any expert i by

T∑
t=1

M t =

T∑
t=1

(pt)T ·mt ≤ lnn

η
+ ηT +

T∑
t=1

mt
i

First we show that M t’s are non-negative.

41

Analysis (Contd.)

Claim

For each t = 1, . . . , T , M t ≥ 0. Moreover,
T∑
t=1

M t ≥ 0.

Proof.

Since mt = 1
ρ
(Axt − b), we have

M t = (pt)T ·mt =
1

ρ

(
(pt)T · (Axt − b)

)
=

1

ρ
((pt)T ·Axt − (pt)T · b) ≥ 0

The last inequality holds as the system is satisfied, i.e. (pt)TAxt ≥ ptb,
because of the ρ-bounded oracle in Step 2..

42

Analysis (contd.)

Claim

For each i = 1, . . . , n, Aix̄ ≥ bi − ε, where x̄ = 1
T

T∑
t=1

xt.

Proof.

- For t = 1, . . . , T , each M t ≥ 0 =⇒ lnn
η

+ ηT +
T∑
t=1

mt
i ≥

T∑
t=1

M t ≥ 0.

- Substitute mt
i = 1

ρ
(Aix

t − bi), we obtain: lnn
η

+ ηT + 1
ρ

T∑
t=1

(Aix
t − bi) ≥ 0.

- This is equivalent to lnn
η

+ ηT + 1
ρ

T∑
t=1

Aix
t − T

ρ
bi ≥ 0.

- Multiply by ρ
T

and use x̄ = 1
T

T∑
t=1

xt:

ρ lnn

Tη
+ ρη +Aix̄− bi ≥ 0

- Substitute T = 4 ρ
2 lnn
ε2

and η ∈ [0,min(1
2
, ε

2ρ
)] we obtain

ε+Aix̄− bi ≥ 0
43

Computational Complexity

- We run the algorithm for T days.

- For each day we make a call to the ρ-bounded oracle.

- The overall time complexity is bounded by the time it takes to run O(ρ
2 lnn
ε2

)

calls to the oracle.

- Note that we didn’t execute a simplex or any algorithm for LP!

- Except the MWU steps, the main work is carried in designing an approriate
ρ-bounded oracle. This depends on the specific LP problem.

44

ρ-Bounded Oracle for Set Cover LP

Input: A universe U consisting of n elements.
A set of m subsets S = {S1, S2, . . . , Sm} of U such that ∪mi=1Si = U .

Output: Find a minimum number of subsets of S such that their union covers
all elements of U .

Let is look at the integer linear program for set cover. Define a 0− 1 indicator
variable xS for each set S ∈ S, where xS = 1 if and only if S is included in the
set cover.

The ILP formulation is:

min
∑
S∈S

xS

∀u ∈ U :
∑
u∈S

xS ≥ 1

∀S ∈ S : xS ∈ {0, 1}

The fractional linear program (LP) is where we replace the integrality
constraint xS ∈ {0, 1} by 0 ≤ xS ≤ 1. Moreover, we can replace 0 ≤ xS ≤ 1

by xS ≥ 0 as this is a minimization problem. 45

Optimization Problem→ Feasibility Problem

- The value of the objective function in ILP formulation is one of the numbers
{1, . . . ,m}.

- Suppose we guess that the size of the set cover is β ∈ {1, . . . ,m}.

- If the following feasibility inequality can be satisfied, we know that the
optimal value is at most β.

∀u ∈ U :
∑
u∈S

xS ≥ 1

∑
S∈S

xS ≤ β

∀S ∈ S : xS ≥ 0

- We can perform a binary search to find the true optimal value.

46

Fractional Set Cover Feasibility Problem

Let P = {x ∈ <m|
m∑
i=1

xi ≤ β
∧
∀i ∈ {1, . . . ,m}, xi ≥ 0}.

P is a convex polytope that defines the feasible region for LP.

We can express the feasibility problem succinctly as follows:

Fractional Set Cover Feasibility Problem
Report x ∈ P such that ∀u ∈ U :

∑
u∈S

xS ≥ 1,

Otherwise, report infeasibility.

We define an approximate abstract feasibility problem as:

Approximate Abstract Feasibility Problem
Let ε ≥ 0 be an error parameter.

If z ∈ P and Az ≥ b is feasible
- Report x ∈ P such that ∀i ∈ {1, . . . , n}: Aix ≥ bi − ε

Else, report infeasibility.

47

Approximate Set Cover Feasibility Problem

Define a 0− 1 characteristic matrix A of size n×m. Elements of
U = {u1, . . . , un} form rows and subsets in S = {S1, . . . , Sm} form columns.

A[i, j] =

1, if ui ∈ Sj
0, otherwise

Approximate Set Cover Feasibility Problem
Input: For a universe U of size n and m-subsets of U , we have
- characteristic matrix A of size n×m,
- vector b of length n consisting of 1’s,

- Feasibility region P = {x ∈ <m|
m∑
i=1

xi ≤ β ∧ ∀i ∈ {1, . . . ,m}, xi ≥ 0}.

- Error parameter ε ≥ 0.

Output:
If z ∈ P and Az ≥ b is feasible
- report x ∈ P such that Aix ≥ 1− ε, ∀i ∈ {1, . . . , n},
Else, report infeasibility.

Note: Ai represents the i-th row of matrix A.
48

ρ-bounded oracles - review

Recall that the ρ-bounded oracle takes as input a probability distribution

p = (p1, . . . , pn), where
m∑
i=1

pi = 1, on the rows of A and returns the following:

ρ-bounded oracle

If x ∈ P and pTAx ≥ pT b is feasible,
return x∗ ∈ P such that ∀i : |Aix∗ − bi| ≤ ρ.
Otherwise, return that the system is infeasible.

For the set cover problem pT b = 1, as b is the vector of all 1s, and p is a
vector of probabilities that add to 1.

49

ρ-bounded oracle for set cover

What do we want?

We want x ≥ 0,
∑
S∈S

xS ≤ β, and

pTAx =
∑
u∈U

pu

(∑
u∈S

xS

)
=
∑
S∈S

xSp(S) ≥ 1, where p(S) denotes the sum of

the probabilities associated to the elements in S.

How to find x?
- Find the set S ∈ S that maximizes p(S) for the given vector p.
- Suppose the set S∗ ∈ S maximizes this value.
- Set xS∗ = β and for every other set S 6= S∗ set xS = 0.
- Observe that the vector x∗ has 0’s in all the coordinates except the
coordinate corresponding to S∗ where it is equal to β.

50

ρ-bounded oracle for set cover

What do we want?

We want x ≥ 0,
∑
S∈S

xS ≤ β, and

pTAx =
∑
u∈U

pu

(∑
u∈S

xS

)
=
∑
S∈S

xSp(S) ≥ 1, where p(S) denotes the sum of

the probabilities associated to the elements in S.

How to find x?
- Find the set S ∈ S that maximizes p(S) for the given vector p.
- Suppose the set S∗ ∈ S maximizes this value.
- Set xS∗ = β and for every other set S 6= S∗ set xS = 0.
- Observe that the vector x∗ has 0’s in all the coordinates except the
coordinate corresponding to S∗ where it is equal to β.

20
23

-0
9-

27

MWU Method
Applications

ρ-Bounded Oracle for Set Cover LP

ρ-bounded oracle for set cover

- What are the two equalities in pTAx =
∑
u∈U

pu

(∑
u∈S

xS

)
=
∑
S∈S

xSp(S)?

- We will interpret the product pTAx in two different ways
- Think of each element ui ∈ U has an associated probability pi.

1st interpretation: Product Ax is a vector of dimension n, where its i-th entry is the
number of sets in S that contain the element ui.
- pTAx is the dot-product of vectors pT and Ax, where the i-th entry in Ax is multiplied
by the probability pi.
- Thus, pTAx is the sum of the products of the probability pi of element ui times the
number of occurrences of ui in S.

2nd Interpretation: For each set S ∈ S sum up the probabilities associated to each
element in that set (this is the quantity p(S)).
- We take the sum p(S) over all sets so that for each element we take into account the
number of times it occurs in the sets of S.

-Therefore, pTAx =
∑
u∈U

pu

(∑
u∈S

xS

)
=
∑
S∈S

xSp(S).

ρ-bounded oracle for set cover (contd.)

x∗ is feasible
The vector x∗ = (0, 0, . . . , β, 0, . . . , 0) ∈ P, as each of its coordinates is ≥ 0

and the sum of the coordinates is ≤ β.

Consider
∑
S∈S

x∗Sp(S).

If
∑
S∈S

x∗Sp(S) ≥ 1, we have the x∗ that we are looking for.

Claim
If
∑
S∈S x

∗
Sp(S) < 1, then no other x ∈ P can satisfy the inequality∑

S∈S
xSp(S) ≥ 1.

Proof.
Note that under the constraints (x ≥ 0,

∑
S∈S

xS ≤ β) the choice of x (=x∗)

that maximizes the expression
∑
S∈S

xSp(S) didn’t satisfy the inequality. Any

other assignment will have a value at most the max value.

51

ρ-bounded oracle for set cover (contd.)

What should be the value of ρ?

Find the smallest value ρ such that for all i ∈ {1, . . . , n}, |Aix∗ − bi| ≤ ρ.
- Due to the choice of x∗ and the matrix A being a 0− 1 matrix, the product
Aix

∗ is either 0 or β.

- Thus |Aix∗ − bi| = |Aix∗ − 1| ≤ |β − 1| ≤ β ≤ m.

- Note that β ≥ 1 as the set cover consists of one or more sets to cover U .

- Set ρ = min{β,m}.

Now we have the required ρ-bounded oracle for the set cover.

ρ-bounded oracle
If x ∈ P and pTAx ≥ pT b is feasible,
we return x∗ = (0, 0, . . . , β, 0, . . . , 0) ∈ <m such that ∀i : |Aix∗ − bi| ≤ ρ.
Otherwise, we return that the system is infeasible.

52

Conclusions

Algorithmic Techniques

• Divide-and-Conquer

• Greedy

• Graph Traversal

• Randomization

• Dynamic Programming

• Linear Programming

• · · ·

• · · ·

• Multiplicative-Weight Update Method

53

References

- Arora, Hazan and Kale, The multiplicative weights update method: a
meta-algorithm and applications, Theory of Computing 8(1): 121-164, 2012.

- Google Scholar’s citations for Arora, Hazan and Kale’s Survey Paper:
(≈ 1000 citations)

- Several Lecture Notes

- MWU is latest addition in CLRS Algorithms textbook’s 4th ed.
(falls under the Machine Learning chapter.)

54

	Motivating Problem
	MWU Method
	Potential Function
	Randomization
	1 Costs
	Generalizations
	Applications
	Linear Programming
	-Bounded Oracle for Set Cover LP

	Conclusions

