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Problem Definition



Basic Problem

A problem motivated from which advertisement to display on the web

Manufacturer Products Ad Amount Total Budget
I A $1 100
II A,B $ 2 100

Online Queries for Products A and B.

Question: Which Manufacturer’s Ad should be shown given that we can
display exactly one advertisement at a time?

Complication: We don’t know how many queries, and with what distribution,
for each product we will receive.
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Example Query Sequences

Manufacturer Products Ad Amount Total Budget
I A $1 100
II A,B $ 2 100

Sample Query Sequences:

1. 50 for B followed by 100 for A

2. 100 for A followed by 50 for B

3. intermix of 100 for A and 50 for B

4. intermix of ? for A and ? for B

In Cases 1-3, it is best to assign all B’s to Manufacturer II and all A’s to
Manufacturer I, with a total revenue of $200.

What to do in Case 4?
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Competitive Ratio



Online v/s Offline

Competitive Ratio
Ratio of the value returned by an Online Algorithm in comparison to the
(best) Offline algorithm.

What is the largest value of c ≤ 1, such that

Value (online algorithm)
Value (off-line algorithm)

≥ c
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Online Algorithmic Problems

1. Bipartite Matching

2. Fractional Bipartite Matching

3. Randomized Bipartite Matching

4. b-Matching - Adwords
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Bipartite Matching



Bipartite Matching

Let G = (V = L ∪R,E) be a bipartite graph where the vertex set V consists
of the sets L and R (referred to as ‘left’ and ‘right’ sets) and a set E of edges
(v, w) where v ∈ L and w ∈ R.

The set M ⊆ E is a matching in G if no two edges in M share a vertex.
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Online Matching Problem

Input: All the vertices in the set L are known in advance, but the vertices in
R and the edges are presented over time. At each time instant
t ∈ {1, 2, 3, . . . }, a new vertex rt ∈ R and all its incident edges arrive.

Task: The online matching algorithm needs to decide among all the currently
unmatched neighbors of rt in the set L to which vertex (if any) rt should be
matched. The vertex rt remains matched to that vertex for the rest of the
algorithm.

1 2 3 4

l1

l2

l3

l4

r1

r2

r3

r4

Output: Find a matching M of the largest possible size. Find M such that
the ratio |M|

|M∗| is as large as possible, where M∗ is (offline) maximum
matching in G.
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Lower Bound on Deterministic Algorithms

Consider a bipartite graph on 4 vertices, where L = {l1, l2} and R = {r1, r2}.
At the first time step the algorithm is presented with the vertex r1 and the two
incident edges (r1, l1) and (r1, l2).

l1 r1

l2

l1 r1

l2

l1 r1

l2

r2

r2

Adversary chooses what to do in the next time stamp and therefore the
Competitive Ratio = 1

2
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Greedy Bipartite Matching Algorihm

Greedy Online Matching Algorithm:
At time step t:
Match rt to any of the unmatched neighbors in the set L

1 2 3 4

l1

l2

l3

l4

r1

r2

r3

r4

Figure 1: Competitive Ratio: |M||M∗| =
3
4

We will show that the Greedy Online Matching Algorithm has a competitive
ratio ≥ 1

2
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Linear Programs and Dual Linear Programs

Definitions

1. For each edge e ∈ E, let xe ≥ 0. Let x =
[
x1, . . . , x|E|

]
be the vector of

variables corresponding to the edges.
2. N (v), the neighborhood set of v, is the set of edges incident to the

vertex v.
3. c =

[
1, . . . , 1

]
is a vector of all 1s of length |E|

4. b =
[
1, . . . , 1

]
is a vector of all 1s of length |V |

5. A is a |V | × |E| matrix and its ij-th entry is 1 if the edge corresponding
to the column j is incident on the vertex corresponding to the row i,
otherwise 0.

A =

l1
l2
l3
l4
r1
r2
r3
r4

e1 e2 e3 e4 e5 e6

1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 0 0 1

l1

l2

l3

l4

r1

r2

r3

r4

e1

e2 e3

e4

e5

e6
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Primal LP

The Primal Linear Program can be stated as follows:

Primal LP:

Objective function:
max

∑
e∈E

xe max cTx

Subject to:

For all v ∈ L ∪R :
∑

e∈N (v)

xe ≤ 1 Ax ≤ b

For all e ∈ E : xe ≥ 0 x ≥ 0.

Objective function
The size of the maximum matching is the optimal value of the objective
function of the LP
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Example: Primal LP

l1 r1

l2 r2

a

b

dc

Bipartite Matching LP:
max a+ b+ c+ d,
Subject to:
l1 : a+ d ≤ 1

l2 : b+ c ≤ 1

r1 : a+ c ≤ 1

r2 : b+ d ≤ 1

a, b, c, d ≥ 0

Maximum value of the objective function of LP is 2.
For example, set a = b = c = d = 1

2

Alternatively, set a = b = 1 and c = d = 0
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Matching LP

Integral Solution
For the bipartite matching LP

max
∑
e∈E

xe,

∀v ∈ L ∪R :
∑

e∈N (v)

xe ≤ 1,

∀e ∈ E : xe ≥ 0

there is always an integral solution (i.e. each variable taking integral values)
that achieves an optimal value.

l1 r1

l2 r2

1/4

1/4

3/43/4

l1 r1

l2 r2

0

0

11
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Primal-Dual LP



Primal-Dual LP

Consider the following Linear Program:

maxx1 + x2

x1 + 2x2 ≤ 4

2x1 + x2 ≤ 6

x1, x2 ≥ 0

Since x1 ≥ 0 and x2 ≥ 0: we have

Observation 1: Value of objective function x1 + x2 ≤ 2x1 + x2 ≤ 6

Observation 2: Value of objective function x1 + x2 ≤ x1 + 2x2 ≤ 4

Observation 3: Value of objective function
x1 + x2 ≤ 1

2
(x1 + 2x2) + 1

4
(2x1 + x2) = x1 + 5

4
x2 ≤ 1

2
4 + 1

4
6 = 7

2
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Primal-Dual LP

Observation 4: Value of objective function is upper bounded by
x1+x2 ≤ y1(x1+2x2)+y2(2x1+x2) = x1(y1+2y2)+x2(2y1+y2)) ≤ 4y1+6y2,
provided

1. y1, y2 ≥ 0

2. y1 + 2y2 ≥ 1 (corresponding to x1)

3. 2y1 + y2 ≥ 1 (corresponding to x2)

Finding the right upper bound can also be expressed as a (dual) linear
program:

min 4y1 + 6y2

y1 + 2y2 ≥ 1

2y1 + y2 ≥ 1

y1, y2 ≥ 0
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Example (contd.)

Primal Dual
Objective Value maxx1 + x2 min 4y1 + 6y2

x1 + 2x2 ≤ 4 y1 + 2y2 ≥ 1

Constraints 2x1 + x2 ≤ 6 2y1 + y2 ≥ 1

x1, x2 ≥ 0 y1, y2 ≥ 0

- Set y1 = y2 = 1/3. This choice satisfies Dual LP constraints and results
in an upper bound of 10

3
< 7

2

- Set x1 = 8
3

and x2 = 2
3

satisfies Primal LP constraints and results in the
objective value of 10

3

=⇒ The upper bound using the linear combination that we obtained is the
optimal value
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Primal-Dual LP - Standard Form

Primal-Dual LP Pair

Primal LP: max cTx subject to Ax ≤ b, x ≥ 0

Dual LP: min bT y, subject to AT y ≥ c, y ≥ 0

Observations:

1. For each variable in the Primal we have a constraint in the Dual.

2. For each constraint in the Primal we have a variable in the Dual.

3. Maximization becomes a Minimization problem.

4. (Weak Duality) If x and y are feasible solutions to the Primal and Dual
LPs: cTx ≤ (AT y)Tx = yT (Ax) ≤ yT b = bT y

Strong Duality Theorem

If x and y are optimal values for the Primal and Dual LPs, then cTx = bT y
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Primal-Dual LP for Matching

Primal LP:

max
∑
e∈E

xe max cT x

Subject to:
For all v ∈ {L ∪R} :

∑
e∈N (v)

xe ≤ 1 Ax ≤ b

For all e ∈ E : xe ≥ 0 x ≥ 0

For Dual LP: Introduce |V | variables corresponding to each vertex constraint
of the primal. We label them p1, . . . , p|V | and let p = (p1, . . . , p|V |)

T

Dual LP:

min
∑
v∈V

pv min bT p

Subject to:
For all edges e = (v, w) ∈ E : pv + pw ≥ 1 AT p ≥ c

pv ≥ 0, for all v ∈ V p ≥ 0
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Example: Primal-Dual Bipartite Matching LP

l1 r1

l2 r2

a

b

dc

Primal LP Dual LP
Objective Value max a+ b+ c+ d min l1 + l2 + r1 + r2

Subject to: l1 : a+ d ≤ 1 a : l1 + r1 ≥ 1

l2 : b+ c ≤ 1 b : l2 + r2 ≥ 1

r1 : a+ c ≤ 1 c : l2 + r1 ≥ 1

r2 : b+ d ≤ 1 d : l1 + r2 ≥ 1

a, b, c, d ≥ 0 l1, l2, r1, r2 ≥ 0
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Greedy Bipartite Matching Algorihm

Greedy Online Matching Algorithm:
At time step t:
Match rt to any of the unmatched neighbors in the set L

l1

l2

l3

l4

r1

r2

r3

r4

l1

l2

l3

l4

r1

r2

r3

l1

l2

l3

l4

r1

r2

l1

l2

l3

l4

r1

1 2 3

Figure 2: Red edges in greedy matching.
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Analysis of Greedy Algorithm

For analysis, for each vertex v ∈ V define the quantity qv ≥ 0 as follows.

Initialize: For all v ∈ V : qv = 0

Update: If the greedy algorithm decides to add edge e = (v, w) to the
matching, set qv = 1

2
and qw = 1

2
.

l1

l2

l3

l4

r1

r2

r3

r4

q-valueq-value

1/20

1/2

0

0

0

1/2

1/2

Observation: The size of the matching M reported by the greedy algorithm
is given by |M | =

∑
v∈L∪R

qv
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Analysis of Greedy Algorithm (contd.)

min
∑
v∈V

pv min bT p

Subject to:
For all edges e = (v, w) ∈ E : pv + pw ≥ 1 AT p ≥ c

pv ≥ 0, for all v ∈ L ∪R p ≥ 0.

For all v ∈ V : set pv = 2qv

Observation: For each edge e = (v, w) ∈ E, pv + pw = 2qv + 2qw ≥ 1 (as
the greedy algorithm doesn’t leave both v and w unmatched)

l1

l2

l3

l4

r1

r2

r3

r4

q-valueq-value

1/20

1/2

0

0

0

1/2

1/2

p-value

0

0

1

1

p-value

1

1

0

0
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Analysis of Greedy Algorithm (contd.)

Competitiveness of Greedy

Greedy algorithm is 1
2
-competitive.

Proof:

1. The value of the objective function of the dual LP is given by∑
v∈V

pv = 2
∑
v∈V

qv = 2|M |.

2. From the weak/strong duality, the objective value of dual LP (= 2|M |) is
an upper bound to the objective value of Primal LP (= |M∗|)

3. 2|M | ≥ |M∗|

4. Thus, Competitive Ratio |M|
|M∗| ≥

1
2

2

NOTE: Primal-Dual LP is used only for proving that the Greedy Online
Bipartite Matching Algorithm is 1

2
-competitive.

In the algorithm, we don’t solve an LP.
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Fractional Bipartite Matching

Input: Bipartite graph G = (V = L ∪R,E)

- Vertices in L are known in advance and each has a unit capacity.

- Vertices in R come in an online fashion along with its incident edges.

- Each vertex in R has a unit amount of information to handout.

- At each time instant t, we transmit the information from the current vertex rt
to its neighboring vertices in the set L if:

1. Sum total of the information transmitted from rt to its neighbors in L is at
most 1.

2. One or more neighbors of rt may receive the information provided they
do not exceed their capacity of 1.

3. Once the information is transmitted it cannot be reversed.
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Problem Formulation

An Observation
Let xe = Amount of information that travels on edge e.
For any vertex v ∈ {L ∪R}, Level(v) =

∑
w∈N(v)

xvw ≤ 1

Fractional Matching Problem
Maximize the total information received by the vertices in the set L, i.e.
max

∑
e∈E

xe

Note: For the (static) graph G the Bipartite Matching LP,
max

∑
e∈E

xe, ∀v ∈ L ∪R :
∑

e∈N (v)

xe ≤ 1, ∀e ∈ E : xe ≥ 0,

applies to this problem formulation as xe’s can take fractional values. Value of
the objective function is the size of the maximum fractional matching in G.
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Waterlevel Algorithm

WATERLEVEL Algorithm

At any time step t:
Drain the water (information) from rt to its neighbors where the preference is
always given to the neighbor with the largest residual capacity remaining till
Case 1: All neighbors of rt are saturated, or
Case 2: rt transmits all its information

Example 1: G = (V = L ∪R,E), where L = {l1, l2}, R = {r1, r2} and
E = {r1l1, r1l2, r2l2}

l1 r1

l2 r2

1/2

1/2

1/2

l1 r1

l2

1/2

1/2

l1

l2

1 2 3
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Example 2

r1

r2

r3

r1

r2

r1

r2

r3

r4

r1

1 2 3 4

Figure 3: Fractional Flow Value = 4× 1
4
+ 3× 1

3
+ 2× 5

12
= 17

6
> 2. Total flow value

received at vertices in L are l1 = 1
4

; l2 = 1
4
+ 1

3
= 7

12
; and l3 = l4 = 1

4
+ 1

3
+ 5

12
= 1.
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Example 3

Let L = {l1, . . . , ln} and R = {r1, . . . , rn}
Let E = {(li, rj)|i ≥ j, for all i, j ∈ {1, . . . , n}}

r1

r2

rn

rj

lj+1

ln

Saturated

Unsaturated

rj+1

lj
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Example 3 (contd.)

Let j be the first index at which there is no further flow of information from
vertices in rt ∈ R for t > j.
=⇒ All the vertices lj+1, . . . , ln are saturated

The index j must satisfy 1
n

+ 1
n−1

+ · · ·+ 1
n−j+1

≥ 1

For what value of j, 1
n

+ 1
n−1

+ · · ·+ 1
n−j+1

≥ 1?

Recall that Hn =
n∑

i=1

1
i
≈ lnn

Thus, 1
n

+ 1
n−1

+ · · ·+ 1
n−j+1

= Hn −Hn−j ≈ lnn− ln(n− j) = ln n
n−j

If j = n(1− 1
e
),

ln n
n−j

= ln n

n−n(1− 1
e

)
= ln e = 1
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Example 3 (contd.)

Competitive Ratio

The competitive ratio of the Waterlevel Algorithm on Example 3 is ≈ (1− 1
e
)

Proof:

1. Vertices r1, . . . , rj−1 are able to send all of their information to vertices
of L

2. Vertices rj+1, . . . , rn aren’t able to send any information

3. Total weight of the fractional matching computed by the WATERLEVEL
algorithm is ≈ j ≈ n(1− 1

e
)

4. G has a perfect matching (match li to ri) =⇒ optimal offline matching
has size n.

5. Competitive ratio ≈ n(1− 1
e

)

n
= (1− 1

e
) ≈ 0.63

2
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Primal Dual Analysis of WATERLEVEL Algorithm

Dual LP:

min
∑
v∈V

pv min bT p

Subject to:
For all edges e = (v, w) ∈ E : pv + pw ≥ 1 AT p ≥ c
For all v ∈ V : pv ≥ 0 p ≥ 0

Recall the analysis of Greedy Algorithm:
By setting pv = 2qv, we had

1. For all vertices v, pv ≥ 0

2. For all edges e = (v, w) ∈ E, pv + pw ≥ 1

3.
∑
v∈V

pv = 2
∑
v∈V

qv = 2|M |

4. Upper Bound: 2|M | ≥ |M∗| =⇒ |M|
|M∗| ≥

1
2

Question: Can we follow the same analysis?
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1st Approach

For all v ∈ V , intialize qv = 0

After the execution of the WATERLEVEL algorithm, for each edge
e = vw ∈ E, set qv = qv + 1

2
xvw and qw = qw + 1

2
xvw, where xvw is the

amount of flow on edge vw.

Size of the fractional matching: |M | =
∑
v∈V

qv

What about the constraint pv + pw ≥ 1 for all edges e = (v, w) ∈ E in the
Dual LP?

Can we get away by setting pv = cqv, where c < 2?

If so, competitive ratio will be 1
c
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1st Approach (contd.)

Consider the edge l4r4 in Example 2. Edges incident to r4 have xe = 0

r1

r2

r3

r1

r2

r1

r2

r3

r4

r1

1 2 3 4

For any of those edges the sum total of the q values of their end points is at
most 1

2

=⇒ to satisfy the Dual LP constraints we need to set pv = 2qv
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2nd Approach

Idea: Uneven Split

Instead of splitting the value of the flow xe on each edge e = vw ∈ E between
its endpoints evenly, split in such a way that qv + qw ≥ 1− 1

e

pv = e
e−1

qv

All constraints of the Dual LP are satisfied

The competitive ratio will be ≥ 1− 1
e
≈ 0.63
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A Key Observation

Observation
Assume that after the algorithm has terminated, the vertex v ∈ L isn’t
saturated. Let the information content that v has received during the entire
execution of the algorithm equals Level(v) < 1. Moreover, assume that
vw ∈ E. Now consider the step in the online algorithm when w ∈ R was
revealed. In that step w routed the information to its neighbors (including v)
in L whose Level’s were at most Level(v).

Proof: Follows from the water-filling analogy since v finished with Level(v) at
the termination and w can only send information to its neighbors up to
Level(v) upon its arrival.
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Partition Function f(x) = ex−1

Let f(x) = ex−1 for 0 ≤ x ≤ 1

Let w ∈ R and let vw ∈ E.
Let a ‘small’ amount dx of information flows on the edge vw when w arrives.

Uneven Split
Partition the increase xvw = dx among qv and qw by the function f as
follows:

qv = qv + f(Level(v))dx

qw = qw + (1− f(Level(v)))dx

Observation: The increase in the value of qv + qw is dx.

If Level(v) ≈ 1 then a large proportion of dx is assigned to qv as
f(Level(v)) = eLevel(v)−1 ≈ 1

=⇒ function f doesn’t split xvw evenly among qv and qw
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q values

Objective: Evaluate q values for all vertices in L ∪R after the Waterlevel
Algorithm has terminated.

Processing of w ∈ R resulted in
Case 1: Level(v) =

∑
z∈R

xvz = 1 (v gets saturated)

Case 2:
∑
v∈L

xvw = 1 (w is completely drained)

Next we analyze the sum qv + qw for both the cases:
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Case 1: v is saturated

We know that v ∈ L is saturated on the termination of the algorithm, i.e.
Level(v) = 1

During the course of the algorithm Level of vertex v increased from 0 to 1

Thus for the edge vw: qv + qw ≥ qv =
1∫
0

f(x)dx =
1∫
0

ex−1dx = 1− 1
e
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Case 2: w is drained out

- Vertex w has sent all of its information to its neighbors including v

- Suppose Level(v) = X, where 0 ≤ X ≤ 1, at the termination of the
algorithm.

- By the Key Observation we know that when w was sending information to its
neighbors, their Level’s were at most X.

- Thus using the fact that f is increasing (therefore, 1− f is decreasing), we
have

qw ≥
1∫
0

(1− f(X))dx = (1− eX−1)
1∫
0

dx = 1− eX−1

-Therefore, qv + qw ≥
X∫
0

f(x)dx+ 1− eX−1 = eX−1 − 1
e

+ 1− eX−1 = 1− 1
e
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Analysis of Waterlevel Algorithm

Claim

Waterlevel algorithm is 1− 1
e
-competitive for fractional bipartite matching.

Proof: For any edge e = (vw) ∈ E, qv + qw ≥ 1− 1
e

Set pv = e
e−1

qv for all v ∈ L ∪R

All the constraints of the Dual LP are satisfied.

We know that
∑

e=vw∈E
(qv + qw) = |M | and the objective value of the Dual LP

is an upper bound to the objective value of the Primal LP.
Optimal value of the Primal is the size of the optimal fractional matching M∗.
Thus,

∑
e=vw∈E

pv + pw = e
e−1

∑
e=vw∈E

qv + qw = e
e−1
|M | ≥ |M∗|

Equivalently, |M||M∗| ≥ 1− 1
e

2
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Randomized Online Bipartite Matching

Reconsider Example 1: G = (V = L ∪R,E), where L = {l1, l2},
R = {r1, r2} and E = {r1l1, r1l2, r2l2}

l1 r1

l2 r2

1/2

1/2

1/2

l1 r1

l2

1/2

1/2

l1

l2

1 2 3

1. Greedy Matching: Competitive Ratio = 1
2

2. Fractional Matching: Competitive Ratio = 3
4

42



Randomized Online Bipartite Matching

Reconsider Example 3: G = (V = L ∪R,E), where L = {l1, . . . , ln},
R = {r1, . . . , rn}, and E = {(li, rj)|i ≥ j, for all i, j ∈ {1, . . . , n}}

r1

r2

rn

rj

lj+1

ln

Saturated

Unsaturated

rj+1

lj

1. Greedy Matching: Competitive Ratio = 1
2

2. Fractional Matching: Competitive Ratio = 1− 1
e
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Randomized Online Bipartite Matching

Bipartite graph be G = (V = L ∪R,E)

Vertices in L = {l1, . . . , ln} are known in advance
Vertices in R = {r1, . . . , rn} arrive online along with its incident edges in
increasing order of their indices

An edge is either in the matching or it isn’t
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RANKING Algorithm

The RANKING randomized matching algorithm on the bipartite graph
G = (L ∪R,E) is as follows.

RANKING Algorithm [KVV90]

Step 1: For each vertex v ∈ L:
Assign a rank (i.e. a real number) rank(v) selected
independently and uniformly at random from [0, 1]

Step 2: For each vertex w ∈ R in order of its appearance:
Match w to its lowest ranked unmatched neighbor (if any) in L
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Analysis Framework

1. Analysis via Primal-Dual LP Framework

2. Construct a Dual LP solution (that is randomized)

3. Constraints of the Dual LP may not be satisfied. But they will hold in
expectation, i.e.

∑
e=(v,w)

E[pv + pw] ≥ 1

4. On expected the value of the dual solution is at least the size of an
optimum matching |M∗| (Note: Objective value of Dual LP ≥ Objective
value of Primal LP (and that equals |M∗|))
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Key Idea 1

Consider the execution of the RANKING.
Let e = (lirj) ∈ E.
When the vertex rj ∈ R is considered by RANKING it may or may not be
matched to li ∈ L as that depends on whether

1. li is unmatched at that moment and

2. among all the unmatched neighbors of rj , rank(li) is the lowest
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Key Idea 1 (contd.)

Claim 1

Consider the set L′ = L \ {li} and the graph G′ = (L′ ∪R,E′), where E′ is
obtained from E by excluding the edges incident on li. Assume that when
RANKING was executed on G′, the ranks assigned to each vertex in L′ is
the same as the ranks assigned to the full set L. Suppose RANKING when
executed on G′ matches rj to li′ ∈ L. Let Γ = rank(li′). If rank(li) < Γ, the
vertex li ∈ L is matched in the execution of RANKING to some vertex of R.

Proof: If li is already matched in G before the vertex rj is processed by
RANKING, then there is nothing to prove.
For the rest of the proof assume that li is not matched even after rj has been
processed by RANKING.
Since the ranks of each vertex in L′ is the same as that in L, it follows that
the (partial) matching computed by RANKING in G′ and G are identical till the
vertex rj is considered.
We know that in G′ RANKING matches rj to li′ =⇒ In G, RANKING will
match rj to li as rank(li) < rank(li′) = Γ. Hence li is matched.

2
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Key Idea 2

Assume the rank of each vertex in L′ = L \ {li} to be same as the rank of the
corresponding vertices in L (as generated by RANKING in Step 1), and we
assume that lirj is an edge in G.

Claim 2

Execute RANKING on the graphs G′ = (L′ ∪R,E′) and G = (L ∪R,E) in
parallel. The set of unmatched vertices in L′ is subset of the set of
unmatched vertices in L at the start of any step of the ‘parallel’ execution.

Proof: This is true at the start as the set of matched vertices is empty and
L′ ⊂ L.
Assume that it holds true when RANKING considered the vertices
r1, r2, . . . , rj−1.
Consider the step when RANKING is going to consider rj .
We ask the following question: For two distinct vertices lk( 6= li) and lk′ that
are among the set of unmatched vertices for both L and L′ before rj was
considered, can rj be matched to lk in G and to lk′ in G′ by RANKING?
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Proof contd.

For two distinct vertices lk( 6= li) and lk′ that are among the set of unmatched
vertices for both L and L′ before rj was considered, can rj be matched to lk
in G and to lk′ in G′ by RANKING?

This cannot occur.
Before rj was considered, lk′ and lk are among the set of unmatched
vertices for both L and L′.
If lk′ is chosen by RANKING in G′ as a match for rj , then
rank(lk′) < rank(lk).
But for G, as lk′ was available as an unmatched vertex when rj was
considered by RANKING, there is no reason to match it to lk which is a
higher ranked vertex than lk′ .
In this step in G either rj gets matched to li or to lk′ .

2
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Setup for Dual LP

1. Initialize all qv = 0, where v ∈ L ∪R

2. If an edge e = vw ∈ E, where v ∈ L and w ∈ R, is identified to be in the
matching by RANKING, we set qv = f(rank(v)) = erank(v)−1 and
qw = 1− qv

Recall that Γ = rank(li′) is the rank of the vertex li′ ∈ L′ that is matched to w
in the graph G′.

Claim 3
Let the execution of RANKING on G matches rj ∈ R to some vertex v ∈ L.
Then qrj = 1− erank(v)−1 ≥ 1− eΓ−1
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Proof of Claim 3

Claim 3
Let the execution of RANKING on G matches rj ∈ R to some vertex v ∈ L.
Then qrj = 1− erank(v)−1 ≥ 1− eΓ−1

Proof: Consider the step when RANKING considers rj .
As discussed in Claim 2, before rj is considered, the set of unmatched
vertices in L′ is a subset of the set of unmatched vertices in L.

This implies that rj has a unmatched neighbor in G whose rank is at most Γ.

Thus rj will be matched to a vertex v ∈ L (may be li) with a rank at most Γ.

Since f is an increasing function (and 1− f is decreasing),
qrj = 1− f(rank(v)) ≥ 1− f(Γ).

2
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Setup for Dual LP (contd.)

As before, set pv = e
e−1

qv for all vertices v ∈ L ∪R.
Note: pv ≥ 0 for all v ∈ {L ∪R} as qv ≥ 0

Claim: In expectation, all the Dual LP constraints are satisfied, i.e. for each
edge e = (vw), where v ∈ L and w ∈ R, E[pv + pw] ≥ 1

Two cases to consider: Either e is in the matching reported by RANKING or it
isn’t.
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Case 1: e ∈ Matching

By definition, qv = erank(v)−1 and qw = 1− qv. Then qv + qw = 1 and
therefore pv + pw = e

e−1
≥ 1

2
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Case 2: e 6∈ Matching

The analysis is analogous to Case 2 of the WATERLEVEL algorithm.
We need to show that E[pv + pw] ≥ 1

Consider the sets L and L′ and the parameter Γ used in Claim 1.
Assume li = v and rj = w.
We know that if rank(v) < Γ then v is matched by RANKING.

=⇒ E[qv] ≥
Γ∫
0

ex−1dx = eΓ−1 − 1
e

By Claim 3 we know that qw ≥ 1− eΓ−1

E[qv + qw] = E[qv] + E[qw] ≥ eΓ−1 − 1
e

+ 1− eΓ−1 = 1− 1
e

Therefore E[pv + pw] = e
e−1

E[qv + qw] ≥ 1.
2
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Main Result

Theorem [KVV90, DJK13]

RANKING Algorithm is (1− 1
e
)-competitive

Proof:

1. For any edge e ∈ E: E[pv + pw] = e
e−1

E[qv + qw] ≥ 1

2.
∑

v∈L∪R
qv = |M |

3. Cost of Primal is the size of an optimal matching M∗

4. Cost of the Dual LP is an upper bound to the cost of the Primal.

5. Cost of Dual:
∑

v∈L∪R
pv = e

e−1

∑
v∈L∪R

qv = e
e−1
|M |

6. We have e
e−1
|M | ≥ |M∗|

7. |M|
|M∗| ≥ 1− 1

e

2
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BALANCE Algorithm



b-Matching

A bipartite graph G = (L ∪R,E)

Vertices in R come in an online manner along with the edges incident to
them.

Parameter b > 0 is a fixed positive integer.

When a vertex w ∈ R is revealed to the algorithm, possibly match it one of its
neighbors v ∈ L provided that the number of vertices matched to v so far by
the algorithm is < b

Whatever decision that we make for w cannot be altered on the arrival of
future vertices of R.
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BALANCE Algorithm

BALANCE Algorithm

For each vertex w ∈ R in order of its appearance:

Among all the neighbors of w in L that have been matched < b times,
match w to that neighbor (if any) that is matched to the fewest.
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AdWords Problem

An alternate view of the problem:

1. Vertices in L = {1, 2, . . . , N} are advertisers, where each of them have a
daily budget of $1

2. Each advertiser bids a small amount ε > 0 for a set of keywords of their
liking.

3. The set R comprises of keyword queries that arrive in an online manner.

4. Each query keyword needs to be assigned to an advertiser (if any) who
has bid for that keyword and has some remaining budget ≥ ε.

5. If the query is assigned to an advertiser, its budget is decreased by ε and
we generate a revenue of ε.
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AdWords Problem (contd.)

BALANCE algorithm assigns the query to the advertiser who has

1. Bid for that keyword

2. Has remaining budget ≥ ε

3. Among all those advertisers has the largest remaining budget.

Problem: Maximize the revenue generated by the algorithm, i.e.,
maximize the sum total of the budget spent by the advertisers.
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An Example

1 2 3 4 5 6

Advertisers

Figure 4: BALANCE with 6 advertisers numbered 1 to 6. Each has a budget of $1 and
can pay for 6 queries. Advertiser i bids for keywords {K1, . . . ,Ki}. Thirty-six online
queries arrive: first 6 for K1 (pink dots), followed by next 6 for K2 (dark red),. . .
BALANCE handles 26 queries whereas optimal can handle all 36 queries.
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Extending the Example

Setup:
- L has N vertices (advertisers) 1, . . . , N , each with a budget of $1
- N keywords K1, . . . ,KN

- Advertiser i bids only for the keywords {K1, . . . ,Ki}
- Set ε = 1

N

- Each advertiser can pay for at most N queries

Query Sequence:
- Total of N2 queries
- First N queries are for the keyword K1

- Next N queries are for the keyword K2

- . . .
- . . .
- Last N queries are for the keyword KN

Offline Revenue = N
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Analysis of BALANCE

- First N queries corresponding to the keyword K1 are distributed evenly
among all the advertisers

- Next N queries corresponding to the keyword K2 are distributed among the
advertisers 2, . . . , N

- In general, N queries for the keyword Ki are distributed evenly among
advertisers i, . . . , n provided that they have sufficient remaining budget

Which queries the advertiser N receives?

- at least one query of type K1

- at least one query of type K2

- . . .
- at least b N

N−i
c queries of type Ki
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Analysis of BALANCE (contd.)

When does N -th advertiser runs out of budget ?

N ≤
⌊
N

N

⌋
+

⌊
N

N − 1

⌋
+ · · ·+

⌊
N

N − i

⌋
≤ N

(
1

N
+

1

N − 1
+ · · ·+ 1

N − i

)

Condition on i

i ≈ N(1− 1
e
)

Recall that n-th Harmonic Number Hn =
n∑

i=1

1
i
≈ lnn.

Express 1
N

+ 1
N−1

+ · · ·+ 1
N−i

as the difference of two Harmonic numbers.
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Analysis of BALANCE (contd.)

Competitive Ratio

BALANCE algorithm’s competitive ratio is at most 1− 1
e

Proof: The above example illustrates that the revenue of Balance is
N(1− 1

e
).

Offline, we will assign first N queries to Advertiser 1, next N queries to
Advertiser 2, and so on.

Total offline revenue = N .

Thus, Competitive Ratio = N(1− 1
e

)

N
= 1− 1

e
.

2
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Adwords with BALANCE

BALANCE Algorithm

For each vertex w ∈ R in order of its appearance:
Among all the neighbors of w in L that have been matched < b times, match w to that neighbor (if
any) that is matched to the fewest.

1. Advertiser-Keyword framework with bids of value ε

2. L corresponds to advertisers

3. R corresponds to query Keyword

4. Match the Keyword to the Advertiser who has bid for the Keyword and
has the largest remaining budget

5. Quantized budgets: Each advertiser’s budget is discretized in k-slabs of
equal value

6. Advertiser spends their budget in increasing order of slab number
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Adwords with BALANCE

Assumption: Optimal offline assignment consumes budget of all the
advertisers with a total revenue of 1× |L| = N

Advertiser of Type i: If the fraction of the total amount that the advertiser
spends during the entire execution of BALANCE is in the range ( i−1

k
, i
k

],
where i ∈ {1, . . . , k}

1

2

3

4

5

6

7

8

9

10
A1 A2 A3 A5A4 A6 A7 A8

TYPE 9 4 6 2 10 4 7 8

SLAB
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Q & A

Question: Suppose in an optimal assignment a query keyword q is
assigned to an advertiser of Type i (i < k). From which slab the revenue with
respect to q will be generated by BALANCE ?

1. q is assigned to a Type i advertiser in an optimal assignment and its
budget isn’t completely consumed by BALANCE (as i < k)

2. In BALANCE q can’t be paid by any slab > i since the queries are
assigned to potential advertisers who have consumed the smallest
amount of their budget

3. =⇒ the contribution to the revenue of BALANCE for q comes from a
slab ≤ i
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Observation 1

Observation 1
All the query keywords that are assigned by optimal to a Type i advertiser,
for some i < k, are ‘paid’ by slabs ≤ i in BALANCE.

1

2

3

4

5

6

7

8

9

10
A1 A2 A3 A5A4 A6 A7 A8

TYPE 9 4 6 2 10 4 7 8

SLAB
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Observation 2

Let xi = Numbers of advertisers of Type i

Let βj = total amount spent from slab j of all the advertisers by BALANCE

Observation 2

β1 = |L|
k

= N
k

, and

βj = N
k
−

j−1∑
i=1

xi
k

(Recall that total budget of each advertiser is $1)

1

2

3

4

5

6

7

8

9

10
A1 A2 A3 A5A4 A6 A7 A8

TYPE 9 4 6 2 10 4 7 8

SLAB
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Observation 3

Observation 3

For 1 ≤ i ≤ k − 1,
i∑

j=1

xj ≤
i∑

j=1

βj

Proof: Consider i = 1. We need to show that x1 ≤ β1. We know that β1 = N
k

.
All the queries that are assigned to Type 1 advertisers in an optimal
assignment need to be paid by slab 1 of the advertisers according to
Observation 1.
The total revenue of queries assigned to Type 1 advertisers in an optimal
assignment is x1 (initial budget of $1 times the number of Type 1 advertisers)
and this need to be paid by β1 (= the total amount in Slab 1).
Thus, x1 ≤ β1.

Consider k − 1 ≥ i ≥ 2. We need to show that
x1 + x2 + · · ·xi ≤ β1 + β2 + · · ·βi.
This follows from the fact that all the queries that are assigned to Types
1, 2, . . . , i advertisers in an optimal assignment need to be paid by Slabs
1, 2, . . . , i.
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Observation 4

Observation 4

The revenue generated by BALANCE is ≥ N(1− 1
k

)−
k−1∑
i=1

k−i
k
xi

Proof: The revenue of BALANCE comes from advertisers of various types.
- An advertiser of Type i, where i < k, generates a revenue of i

k
.

- There are xi such advertisers and thus the total revenue from Type i
advertisers is i

k
xi.

- Also, we obtain a revenue of N −
k−1∑
i=1

xi from the Type k advertiser.

- But we may loose a revenue of 1
k

for each advertiser due to ε spanning
consecutive slabs.
- Putting all this together, the revenue of BALANCE is

≥ N −
k−1∑
i=1

xi −
N

k
+

k−1∑
i=1

i

k
xi = N(1− 1

k
)−

k−1∑
i=1

k − i
k

xi

2
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Bounding the Revenue

What is a good lower bound on N(1− 1
k

)−
k−1∑
i=1

k−i
k
xi?

⇔

What is an upper bound on
k−1∑
i=1

k−i
k
xi?

It results in the following Linear Program:

Primal LP

Maximize
k−1∑
i=1

k−i
k
xi

Subject to:

For all i ∈ {1, . . . , k − 1}:
i∑

j=1

xj ≤
i∑

j=1

βj (Observation 4)

For all i ∈ {1, . . . , k} : xi ≥ 0
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Bounding the Revenue (contd.)

Condition
i∑

j=1

xj ≤
i∑

j=1

βj can be expressed as follows:

i∑
j=1

xj ≤
i∑

j=1

βj

≤
i∑

j=1

(
N

k
−

j−1∑
l=1

xl
k

)

=
i

k
N −

i∑
j=1

j−1∑
l=1

xl
k

=
i

k
N −

i∑
j=1

i− j
k

xj
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Bounding the Revenue (contd.)

By rearranging terms for xj , we have
i∑

j=1

(1 + i−j
k

)xj ≤ i
k
N

Thus, we can express the Primal LP as follows:

Primal LP

Maximize
k−1∑
i=1

k−i
k
xi

Subject to:

For all i ∈ {1, . . . , k − 1}:
i∑

j=1

(1 + i−j
k

)xj ≤ i
k
N

For all i ∈ {1, . . . , k} : xi ≥ 0
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Primal-Dual LP

Primal LP

Maximize
k−1∑
i=1

k−i
k
xi

Subject to:

For all i ∈ {1, . . . , k − 1}:
i∑

j=1

(1 + i−j
k

)xj ≤ i
k
N

For all i ∈ {1, . . . , k} : xi ≥ 0

Dual LP

Minimize
k−1∑
i=1

( i
k
N)yi

Subject to:

For all i ∈ {1, . . . , k − 1}:
k−1∑
j=i

(1 + j−i
k

)yj ≥ k−i
k

For all i ∈ {1, . . . , k − 1} : yi ≥ 0
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Reasoning

Consider the Dual LP constraint with respect to the Primal LP variable x1.
We will need that

y1 + y2(1 +
1

k
) + y3(1 +

2

k
) + · · ·+ yk−1(1 +

k − 2

k
) ≥ k − 1

k

This can be expressed as

k−1∑
j=1

(1 +
j − 1

k
)yj ≥

k − 1

k

In general, for the i-th variable xi, we have the Dual LP constraint

k−1∑
j=i

(1 +
j − i
k

)yj ≥
k − i
k
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Complementary Slackness



Feasible Solution → Optimal Solution

How to determine that a feasible solution is optimal in the Primal-Dual LP
framework?

Complementary Slackness Condition
If feasible solutions x and y to Primal LP (max cx,Ax ≤ b, x ≥ 0) and Dual
LP (min by,AT y ≥ c, y ≥ 0) satisfy ∀i : (bi −

∑
j

aijxj)yi = 0 and

∀j : (
∑
i

aijyj − cj)xj = 0 then they are also optimal.
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An Example

Primal Dual
Objective Max x1 + x2 + x3 Min 6y1 + 4y2 + 10y3

Constraints 2x1 + 3x2 + x3 ≤ 6 2y1 + y2 + 3y3 ≥ 1

x1 + x2 − 7x3 ≤ 4 3y1 + y2 − y3 ≥ 1

3x1 − x2 + 5x3 ≤ 10 y1 − 7y2 + 5y3 ≥ 1

Non-negativity x1, x2, x3 ≥ 0 y1, y2, y3 ≥ 0

Feasible Primal LP solution: x = (0, 5
4
, 9

4
)

Feasible Dual LP solution y = ( 3
8
, 0, 1

8
)

Check Complementary Slackness Conditions (∀i : (bi −
∑
j

aijxj)yi = 0 and

∀j : (
∑
i

aijyj − cj)xj = 0)

Primal: Ineq. 1 & 3 are tight. Slack in the 2nd Ineq. but y2 = 0

Dual: Ineq. 2 & 3 are tight. Slack in 1st Ineq. but x1 = 0

=⇒ x = (0, 5
4
, 9

4
) and y = ( 3

8
, 0, 1

8
) are optimal.
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Feasible Solution for Primal LP

Primal LP: Max
k−1∑
i=1

k−i
k xi

Subject to:

For all i ∈ {1, . . . , k − 1}:
i∑

j=1
(1 + i−j

k )xj ≤ i
kN

For all i ∈ {1, . . . , k} : xi ≥ 0

Set x1 = N
k

, x2 = N
k

(1− 1
k

), . . . , xi = N
k

(1− 1
k

)i−1, . . . , xk = N
k

(1− 1
k

)k−1

They are derived by setting
i∑

j=1

(1 + i−j
k

)xj = i
k
N and solving for xi for

i = 1, 2, . . . , k − 1.

The assignment xi = N
k

(1− 1
k

)i−1 is a feasible solution for Primal LP

80



Feasible Solution for Dual LP

Dual LP: Minimize
k−1∑
i=1

( i
kN)yi

Subject to:

For all i ∈ {1, . . . , k − 1}:
k−1∑
j=i

(1 + j−i
k )yj ≥ k−i

k

For all i ∈ {1, . . . , k − 1} : yi ≥ 0

Set
k−1∑
j=i

(1 + j−i
k

)yj = k−i
k

We obtain yk−1 = 1
k

, yk−2 = 1
k

(1− 1
k

), yk−3 = 1
k

(1− 1
k

)2, . . . ,
yk−i = 1

k
(1− 1

k
)i−1, . . . , y1 = 1

k
(1− 1

k
)k−2

All yi’s are feasible.
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Complementary Slackness Conditions

Optimality
The assignments x and y are optimal solutions for the Primal and Dual LPs.

Proof: Assignment of x and y are feasible for Primal and Dual LPs. Since all
the inequalities are equalities, there is no slack, and thus the complementary
slackness conditions hold. This implies that not only x and y are feasible, but
they are also optimal solutions for Primal and Dual LPs.
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A Summation

k−1∑
i=1

(
k−i
k

)
xi = N

(
1− 1

k

)k
Proof:

k−1∑
i=1

(
k − i

k

)
xi =

k−1∑
i=1

(
k − i

k

)(
N

k

)(
1 −

1

k

)i−1

=
N

k2

k−1∑
i=1

k

(
1 −

1

k

)i−1
−

k−1∑
i=1

i

(
1 −

1

k

)i−1


=
N

k2

k
 1 −

(
1 − 1

k

)k−1

1 −
(
1 − 1

k

)
 − k2

k − 1

((
1 −

1

k

)k
− k

(
2

(
1 −

1

k

)k
− 1

)
− 1

)
=

N

k2

k2
(
1 −

(
1 −

1

k

)k−1
)
−

k2

k − 1

(
(1 − 2k)

(
1 −

1

k

)k
+ k − 1

)

= N

 (k − 1)

(
1 −

(
1 − 1

k

)k−1
)
− (1 − 2k)

(
1 − 1

k

)k − k + 1

k − 1



= N

−(k − 1)
(
1 − 1

k

)k−1 − (1 − 2k)
(
1 − 1

k

)k
k − 1


= N

(
1 −

1

k

)k
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Cost of Optimal Solution

Main Claim

BALANCE is (1− 1
e
)-competitive

Proof:

1. As k →∞,
(
1− 1

k

)k → 1
e

2. Upper bound on the value of
k−1∑
i=1

k−i
k
xi = N

e

3. Revenue of BALANCE is atleast

N(1− 1
k

)−
k−1∑
i=1

k−i
k
xi ≥ N(1− 1

k
)− N

e
≈ N(1− 1

e
) for large values of k.

4. Competitive ratio is 1− 1
e
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