1

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada **Main Result**

Local Ordering Theorem (CHJ2020)

Consider a unit cube in *d*-dimensions. For any $\epsilon \in (0, \frac{1}{2}]$, there is a family of $O(\frac{1}{\epsilon^d} \log(\frac{1}{\epsilon}))$ orderings of $[0, 1)^d$ such that for any pair of points $p, q \in [0, 1)^d$, there is an ordering in the family where all the points between p and q are within a distance of at most $\epsilon ||p - q||_2$ from p or q.

An Illustration

Let p and q be two points in a unit-cube.

Partition the unit-cube into sub-cubes of dimension $\epsilon ||p-q||_2$.

Let C_p and C_q be two sub-cubes such that $p \in C_p$ and $q \in C_q$.

 \exists an ordering σ among $O(\frac{1}{\epsilon^d}\log(\frac{1}{\epsilon}))$ orderings such that

- 1. Points in C_p and C_q are mapped to two intervals on the real line by the ordering σ
- 2. These two intervals are adjacent.

Applications

An alternative to Quadtrees with applications in

- Dynamic approximate bichromatic closest pair
- dynamic spanners
- dynamic approximate Euclidean Minimum Spanning Trees
- Approximate Nearest Neighbors
- ...

Input: Set of *n* points in \Re^d **Output:** Closest pair

Algorithm:

- 1. For every ordering, find the pair of consecutive points that have minimum distance.
- 2. Report the pair that has the least distance among all the orderings.

Time: $O(n \times \# \text{ of orderings}) \approx O(n/\epsilon^d)$

Dynamic: Insert/Delete points and maintain orderings (and hence the closest pair)

Old & New Concepts

- 1. Quadtree.
- 2. Linear orderings of points in a Quadtree.
- 3. Shifted Quadtrees and ANN.
- 4. Quadtree as union of ϵ -Quadtrees.
- 5. (Wonderful) Walecki Construction from 19th Century.
- 6. Locality-Sensitive Orderings.
- 7. Applications in ANN, Bi-chromatic ANN, Spanners, ...

Quadtree

С	D
A	В

k	l	0	p
i	j	m	n
с	d	g	h
a	b	e	f

Linear order

DFS traversal of Quadtree

Obtain a linear order of points by performing the DFS traversal of the Quadtree.

h	f	а	k	е	1	j	i	g	b	d	с
---	---	---	---	---	---	---	---	---	---	---	---

ANN

Approximate NN

Let q be nearest-neighbor of p. Assume that there is a cell containing p and q in Quadtree with diameter $\approx ||p - q||$.

How to ensure that the following is true?

There is a cell containing p and q in the Quadtree with diameter $\approx ||p - q||$

Assume all points in $P \subset [0,1)^d$. Construct $D = 2 \lceil \frac{d}{2} \rceil + 1$ copies of P.

Shifted Point Sets

For i = 0, ..., D, define shifted point sets

 $P_i = \{p_j + (\frac{i}{D+1}, \frac{i}{D+1}, \dots, \frac{i}{D+1}) | \forall p_j \in P\}$

Let Quadtrees of P_0, P_1, \ldots, P_D be T_0, T_1, \ldots, T_D .

Chan (DCG98)

For any pair of points $p, q \in P$, there exists a Quadtree $T \in \{T_0, T_1, \ldots, T_D\}$ such that the cell containing p, q in T has diameter c||p - q|| (for some constant $c \ge 1$). Chan's ANN Algorithm:

- 1. Construct linear (dfs) order for each of the Quadtrees T_0, T_1, \ldots, T_D .
- 2. For each point *p*, find its neighbor in each of the linear orders that minimizes the distance.
- 3. Let q be the neighbor of p with the minimum distance.
- 4. Report q as the ANN of p.

Chan (1998, 2006)

For fixed dimension d, in $O(n \log n)$ preprocessing time and O(n) space, we can find a c-approximate nearest neighbor of any point in P in $O(\log n)$ time (c = f(d)).

 $\epsilon\text{-}\textbf{Quadtree}$

ϵ -Quadtree

ϵ -Quadtree

For a constant $\epsilon > 0$, recursively partition a cube $[0,1)^d$ evenly into $\frac{1}{\epsilon^d}$ sub-cubes ($\epsilon = 1/2 \implies$ Standard Quadtree).

Quadtree as union of ϵ -Quadtrees

Partitioning a Quadtree T into $\log \frac{1}{\epsilon} \epsilon$ -Quadtrees

Let $\epsilon = 2^{-3}$. $T = T_{\epsilon}^B \cup \underline{T_{\epsilon}^R} \cup \underline{T_{\epsilon}^U}$.

Walecki Theorem

Permuting cells of a node of an $\epsilon\text{-Quadtree}$

Let $\epsilon = 2^{-2}$. Any two cells are neighbors in at least one of the 8 permutations.

А	В	С	D
Е	F	G	Н
Ι	J	K	L
М	N	0	Р

ABPCODNEMFLGKHJI BCADPEOFNGMHLIKJ CDBEAFPGOHNIMJLK DECFBGAHPIOJNKML EFDGCHBIAJPKOLNM FGEHDICJBKALPMON GHFIEJDKCLBMANPO HIGJFKELDMCNBOAP

Walecki Theorem

For *n* elements $\{0, 1, 2, ..., n-1\}$, there is a set of $\lceil \frac{n}{2} \rceil$ permutations of the elements, such that, for all $i, j \in \{1, 2, ..., n-1\}$, there is a permutation in which *i* and *j* are adjacent.

Partition K_8 in 4 Hamiltonian Paths

DFS Traversal of an ϵ -Quadtree T_{ϵ}

- 1. #children of any node of $T_{\epsilon} = O(1/\epsilon^d)$.
- 2. Construct $O(1/\epsilon^d)$ permutations of cells using Walecki's construction.
- 3. Generate $O(1/\epsilon^d)$ linear orders of points in *P* by performing DFS traversal of T_{ϵ} with respect to each permutation.

А	В	С	D
Е	F	G	Н
I	J	К	L
М	N	0	Р

А	в	Р	С	0	D	Ν	Е	М	F	L	G	К	Н	J	Ι
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

- 1. Point set $P \subset [0,1)^d$.
- 2. Shifted points sets P_0, P_1, \ldots, P_D and their Quadtrees T_0, T_1, \ldots, T_D .
- 3. Each Quadtree T_i partitioned into $\log \frac{1}{\epsilon} \epsilon$ -Quadtrees.
- 4. Permutations of cells of a node in an ϵ -Quadtree (Walecki's result).
- 5. Linear orders of points in P from DFS (for each permutation) of ϵ -Quadtrees.
- 6. Total #Linear Orders = $O(D \times \log \frac{1}{\epsilon} \times \frac{1}{\epsilon^d}) = O(\frac{1}{\epsilon^d} \log \frac{1}{\epsilon})$.
- 7. These linear orders satisfy the "locality" condition.

Local-Sensitivity Theorem

Let the Quadtree $T_i \in \{T_0, T_1, \dots, T_D\}$ has a cell containing p and q with diameter $\approx ||p - q||$.

23

Main Theorem

(CHJ 2019)

Consider a unit cube $[0,1)^d$. For $\epsilon > 0$, there is a family of $O(\frac{1}{\epsilon^d} \log \frac{1}{\epsilon})$ orderings of $[0,1)^d$ such that for any $p,q \in [0,1)^d$, there is an ordering in the family where all the points between p and q are within a distance of at most $\epsilon ||p-q||_2$ from p or q.

Applications

Consider problems where you may need to consider pairwise distances between points such as

- 1. Closest Pair
- 2. Nearest Neighbour of each point
- 3. MST
- 4. Sparse Spanners
- 5. & Updates
- 6. . . .

Key Idea: Computation on sparse graph formed by joining adjacent points in linear orders rather than the complete graph

Approximate Bichromatic NN

Let p and q constitute a red-blue Nearest Neighbor of the point set.

Approximate Bichromatic NN

Let p and q constitute a red-blue Nearest Neighbor of the point set.

Approximate Bichromatic NN

Let p and q constitute a red-blue Nearest Neighbor of the point set.

Input: Bichromatic point set $R \cup B \in [0, 1)^d$. **Output:** Bichromatic ANN pair $(r, b), r \in R, b \in B$.

For each of D=O(d) quadtrees of shifted point sets & For each of the $\log \frac{1}{\epsilon}$ $\epsilon\text{-quadtrees}$

- 1. Construct $O(\frac{1}{\epsilon^d})$ Walecki's permutations.
- 2. For each permutation, perform DFS traversal of the ϵ -quadtrees, resulting in a linear order of points in *P*.
- 3. Among all pairs of consecutive red-blue points in all the linear orders, find the pair (r, b) that minimizes ||r b||.
- 4. Report (r, b) as Bichromatic ANN.

Bichromatic ANN Theorem (CHJ19)

Let *R* and *B* be two sets of points in $[0, 1)^d$ and let $\epsilon \in (0, 1)$ be a parameter. Then one can maintain a $(1 + \epsilon)$ -approximation to the bichromatic closest pair in $R \times B$ under updates (i.e., insertions and deletions) in $O(\log n \log^2 \frac{1}{\epsilon}/\epsilon^d)$ time per operation, where *n* is the total number of points in the two sets. The data structure uses $O(n \log \frac{1}{\epsilon}/\epsilon^d)$ space, and at all times maintains a pair of points $r \in R$, $b \in B$, such that $||r - b|| \leq (1 + \epsilon)d(R, B)$, where $d(R, B) = \min_{r \in R, b \in B} ||r - b||$.

Conclusions

- Variants of linear orders are used to construct dynamic structures for ANN, Geometric Spanners, Approximate EMST, etc.
- Find more applications where this framework can be applied.

References

Timothy M. Chan, Sariel Har-Peled, Mitchell Jones: On Locality-Sensitive Orderings and Their Applications. SIAM Journal of Computing 49(3): 583-600, 2020.