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Lovasz Local Lemma (LLL)

Discovered by Erdos and Lovasz in 1973.

Another tool from the probabilistic method (recall COMP2804).

Proves existence of combinatorial objects under certain constraints.
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Motivation for the Lovasz Local Lemma

We are trying to avoid certain events S = {E1, E2, . . . , Ek}

What if each event A ∈ S is independent? Easy.

P (No A ∈ S occurs) =
k∏

i=1

(1− P (Ei))

Positive as long as P (A) < 1 for each A ∈ S.

What if the events are not independent? Union Bound?

P (No A ∈ S occurs) ≥ 1−
k∑

i=1

P (Ei)

Positive only if the probability of the events in S are small.
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Stating the Lovasz Local Lemma

The LLL allows us to show that it is possible for none of the events
in A to occur when the events have limited dependence.

A very general form is the following.

Theorem (Lovász Local Lemma)
Let S be a finite set of events in a probability space. For A ∈ S, let
Γ(A) be a subset of S satisfying that A is independent from the
collection of events S \ ({A} ∪ Γ(A)).
If there exists an assignment of reals x : S → (0, 1) such that

∀A ∈ S : Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)),

then the probability of avoiding all events in S is at least∏
A∈S(1− x(A)) and hence positive.
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Stating the LLL

A simple form of the lemma is the following.

Theorem (Symmetric Form Lovasz Local Lemma)
Let S be a finite set of events in a probability space. Let d be an integer
such that each event A ∈ S is independent from all other events in A
except for at most d of them. Let p be a real such that Pr(A) ≤ p for all
A ∈ S. Then, if

ep(d+ 1) ≤ 1

with positive probability none of the events in S happen.
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An Application to Satisfiability

The K-SAT problem

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4)

A CNF boolean formula
k variables per clause
NP-Complete problem in general
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A Lower Bound On Number of Clauses

Warm-up: What is minimum number of clauses needed to build
an unsatisfiable K-CNF formula?

Pr(clause being false) = 1/2k

Expected number of false clauses is m · 1
2k

.

This is less than 1 if m < 2k.

We need at least 2k clauses.
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Applying the LLL

K-SAT becomes more difficult as there is more “overlap" between
the clauses.

If there is not too much overlap in a CNF formula, it will always
be satisfiable (i.e. there exists a satisfying assignment).

Let us show that if every clause shares a variable with ≤ 2k

e − 1
other clauses, the formula is satisfiable.
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Making it Algorithmic

The original proof for the LLL is non-constructive.

Constructive proof provided by Moser and Tardos in 2010.
Won them the Godel Prize!

They provide simple and efficient algorithm
Efficiently find desired configuration rather than just show it exists.

Closed the gap between previous constructive results and the
existential version.

K-SAT : we could actually find the assignment of variables.
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Algorithmic LLL Setup

Let P = {P1, P2, P3, . . .} be a set of mutually independent random
variables in the probability space Ω.

Let S = {E1, E2, . . .} be the set of events we are trying to avoid.
Each A ∈ S is determined by a subset of the random variables in P.

Let vbl(A) ⊆ P be the unique minimal subset of random variables
which determines an event A ∈ S.

If an event A ∈ S happens from an evaluation of the random
variables P, we say that A was violated.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 11 / 40



Algorithmic LLL Setup

Let P = {P1, P2, P3, . . .} be a set of mutually independent random
variables in the probability space Ω.

Let S = {E1, E2, . . .} be the set of events we are trying to avoid.
Each A ∈ S is determined by a subset of the random variables in P.

Let vbl(A) ⊆ P be the unique minimal subset of random variables
which determines an event A ∈ S.

If an event A ∈ S happens from an evaluation of the random
variables P, we say that A was violated.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 11 / 40



Algorithmic LLL Setup

Let P = {P1, P2, P3, . . .} be a set of mutually independent random
variables in the probability space Ω.

Let S = {E1, E2, . . .} be the set of events we are trying to avoid.
Each A ∈ S is determined by a subset of the random variables in P.

Let vbl(A) ⊆ P be the unique minimal subset of random variables
which determines an event A ∈ S.

If an event A ∈ S happens from an evaluation of the random
variables P, we say that A was violated.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 11 / 40



Algorithmic LLL Setup

Let P = {P1, P2, P3, . . .} be a set of mutually independent random
variables in the probability space Ω.

Let S = {E1, E2, . . .} be the set of events we are trying to avoid.
Each A ∈ S is determined by a subset of the random variables in P.

Let vbl(A) ⊆ P be the unique minimal subset of random variables
which determines an event A ∈ S.

If an event A ∈ S happens from an evaluation of the random
variables P, we say that A was violated.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 11 / 40



Algorithmic LLL Setup

Let G be the dependency graph for event set S.
Vertices: The vertex set is S
Edges: Edge between A,B ∈ S if A ̸= B and vbl(A) ∩ vbl(B) ̸= ∅

Let Γ(A) be the neighborhood of A ∈ S in the dependency graph G.

Let Γ+(A) := {A} ∪ Γ(A) be the inclusive neighborhood of A ∈ S.
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The Algorithm

The algorithm is incredibly simple...
Just keep resampling violated events until we get what we want!

Figure 1: Algorithmic Lovasz Local Lemma Flowchart
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The Algorithmic LLL Theorem

Theorem (Algorithmic Lovasc Local Lemma)
If there exists an assignment of reals x : S → (0, 1) such that

∀A ∈ S : Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B)),

then there exists an evaluation of the variables in P that does not
violate any of the events in S.
This assignment can be found with the aforementioned randomized
algorithm which resamples an event A ∈ S at most an expected x(A)

1−x(A)
times.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 14 / 40



The Total Number of Resamples

Let NA be the times event A ∈ S resampled.

Let N be the total number of resamples

N =
∑
A∈S

NA

E(N) = E

(∑
A∈S

NA

)
E(N) =

∑
A∈S

E(NA)

E(N) =
∑
A∈S

x(A)

1− x(A)

Corollary
The expected total number of resamples the algorithm performs it at
most

∑
A∈S

x(A)
1−x(A) .
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The Execution Log

Let L : N → S be the execution log of the algorithm.

Each entry corresponds to an event resampled at a certain time.

Resample Step Event
1 A
2 B
3 C
4 D
5 A
6 C
7 B
8 D

Table 1: Example of an Execution Log
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Witness Trees

A witness tree τ = (T, σT )
Finite rooted tree T

Labeling of its vertices σT : V (T ) → S

For any vertex u ∈ V (T ), its children can only come from Γ+(σT (u))

For simplicity: V (τ) := V (T ), [v] := σT (v)

Figure 2: Example of Witness Tree with S = {A,B,C,D,E, F}
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Constructing Witness Trees

Each entry in the log has a corresponding witness tree.
For step t in the log L (i.e. L(t)), the witness tree is τL(t).

The witness tree τL(t) is constructed in following way.
1 Make event L(t) the root.
2 Go backwards in L from step t (let WT at step i be τ

(i)
L (t))

If ∃v ∈ τ
(i+1)
L (t) such that L(i) ∈ Γ+([v]), add L(i) as child to the

deepest such vertex.
Else skip this iteration and set τ

(i)
L (t) = τ

(i+1)
L (t).

3 Stop when we reach beginning of the log.

Each WT τL(t) is justification for having to resample at step t.
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Witness Tree Definitions

A WT τ occurs in an execution log L if τL(t) = τ for some t ∈ N.

A witness tree τ is proper if for any vertex v ∈ V (τ), its children
all have distinct labels.

Figure 3: Example of not proper witness tree
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First Claim about Witness Trees

Lemma (Witness Trees are Proper)

Let τ be a fixed witness tree and L be the (random) execution log
produced by the algorithm.

If τ occurs in the log L =⇒ τ is proper

Figure 4: Example of not proper witness tree
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Slightly Stronger Claims about Witness Trees

Not only do siblings vertices in a witness tree (associated to a
random log) always have distinct labels, but...

Lemma (Witness Tree Level Uniqueness)

Let τ be a witness tree occurring in a random log.

All vertex labels for τ at equal depth are distinct.

Furthermore...

Lemma (Witness Trees Level Independence)

Let τ be a witness tree occurring in a random log.

For any u, v ∈ V (τ) at equal depth, vbl([u]) ∩ vbl([v]) = ∅
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Lemma (Witness Trees Level Independence)

Let τ be a witness tree occurring in a random log.

For any u, v ∈ V (τ) at equal depth, vbl([u]) ∩ vbl([v]) = ∅
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Bounding Probability Of Occurrence

Can we say how likely it is for a witness tree to occur in the log?

Lemma (Probability of Witness Tree Occurence)

Let τ be a fixed witness tree and L be the (random) execution log
produced by the algorithm.

Pr(τ occurs in L) ≤
∏

v∈V (τ)

Pr ([v])

The proof uses probabilistic coupling technique.

We will couple two algorithms:
The constructive LLL algorithm
A procedure called τ -check.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 22 / 40



Bounding Probability Of Occurrence

Can we say how likely it is for a witness tree to occur in the log?

Lemma (Probability of Witness Tree Occurence)

Let τ be a fixed witness tree and L be the (random) execution log
produced by the algorithm.

Pr(τ occurs in L) ≤
∏

v∈V (τ)

Pr ([v])

The proof uses probabilistic coupling technique.

We will couple two algorithms:
The constructive LLL algorithm
A procedure called τ -check.

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 22 / 40



The τ -check Procedure

τ -check:
1 For each vertex v in decreasing depth (i.e. reverse BFS order)
2 Take random evaluation of vbl([v])
3 Check if [v] is violated

The τ -check passes if [v] is violated for every v ∈ V (τ).

For a fixed witness tree τ :

Pr(τ -check passes) =
∏

v∈V (τ)

Pr ([v])
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The Coupling Argument

The coupling argument: A τ -check performed on a witness tree
occurring in the log using the same random source as the
constructive LLL algorithm will pass.

(τ occurs in L =⇒ τ -check passes)

=⇒ Pr(τ occurs in L) ≤ Pr(τ -check passes)

=⇒ Pr(τ occurs in L) ≤
∏

v∈V (τ)

Pr ([v])
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Using the Same Random Source

Imagine that each random variable P ∈ P, produces an infinite
stream of random samples P (0), P (1), P (2), . . .

Each need for a new random sample, we take next unused value.
P (i) if we have already taken i samples from P .
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How the τ -check uses Random Source

Let τ be an arbitrary witness tree from our log L.
i.e. τ = τL(t) for some t ∈ N

Let v be an arbritrary vertex in τ .

Question: In a τ -check, what values from the random source do
we pull for [v]?

i.e. What value of P (i) for each P ∈ vbl([v])?
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Defining the Set Q(P )

Let Q(P ), for v ∈ V (τ) and P ∈ vbl([v]), be the set of vertices
w ∈ V (τ) that have a greater depth than v and P ∈ vbl([w]).

Consider a P ∈ vbl([v]).

What happens when we visit a vertex in Q(P ) during a τ -check?
We will sample from P .

Will we sample from P with any vertices w deeper than v, but
where P /∈ vbl([w])?

NO.

Will we sample from P with any vertices w at same level as v?
NO.
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The value of P during a τ -check

The only times we will sample from P during the τ -check is when
we visit vertices in Q(P ).

When the variables of v are sampled for the τ -check, for
P ∈ vbl([v]) we will sample:

P (|Q(P )|)
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The value of P during the LLL algorithm

Let us now ask a similar question, but for the constructive LLL
algorithm rather than the τ -check.

Question: What is the value of P for each P ∈ vbl([v]) before the
LLL algorithm resamples [v]?

We resample P at beginning of the LLL algorithm.

Then we resample it for each [w] for w ∈ Q(P )

Since each [w] shows up earlier in the log.

Thus, before we resample [v], each of its P ∈ vbl([v]) holds value

P (|Q(P )|)

.
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Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):

Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.

When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !

i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



Something Cool

Each P ∈ vbl([v]) has value of P (|Q(P )|):
Before [v] is resampled in the LLL algorithm.
When v has a τ -check performed.

Recall why we have to resample [v]...

[v] was resampled because it was violated !
i.e. If each P ∈ vbl([v]) has value P (|Q(P )|) =⇒ [v] violated.

τ -check will also find that [v] is violated !

The τ -check on τ passes!
Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 30 / 40



The Galton-Watson Process

A simple process is defined which generates proper witness trees:

1 Fix an event A ∈ S which becomes the root.
2 For each vertex v produced in the previous round:

For each B ∈ Γ+([v]):
Add a vertex labeled B as a child of v with probability x(B).
Otherwise (with probability 1− x(B)), skip the event B.

3 Continue process until it goes extinct

Known as a multitype Galton-Watson branching process.
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Probability of Generating a Witness Tree

Let x′(B) be defined as the following

x′(B) := x(B)
∏

C∈Γ(B)

(1− x(C))

.

Lemma (Probability of Generation)

For a fixed proper witness τ with its root labeled A, the probability pτ
that the Galton-Watson process above generates exactly τ is

pτ =
1− x(A)

x(A)

∏
v∈V

x′([v])
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Probability of Generating a Witness Tree Cont.

Let Dv ⊆ Γ+([v]), for v ∈ V (τ), be the set of inclusive neighbors of
[v] that do not appear as a label of some child node of v.

i.e. the children of v can be represented as Γ+([v]) \Dv.

We can now derive an expression for the probability that the
Galton-Watson expression generates exactly τ .
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Probability of Generating a Witness Tree Cont.

pτ =
1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Dv

(1− x([u]))

)

=
1− x(A)

x(A)

∏
v∈V (τ)

 x([v])

1− x([v])

∏
u∈Γ+([v])

(1− x([u]))


=

1− x(A)

x(A)

∏
v∈V (τ)

x([v])
∏

u∈Γ([v])

(1− x([u]))


=

1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 34 / 40



Probability of Generating a Witness Tree Cont.

pτ =
1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Dv

(1− x([u]))

)

=
1− x(A)

x(A)

∏
v∈V (τ)

 x([v])

1− x([v])

∏
u∈Γ+([v])

(1− x([u]))



=
1− x(A)

x(A)

∏
v∈V (τ)

x([v])
∏

u∈Γ([v])

(1− x([u]))


=

1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 34 / 40



Probability of Generating a Witness Tree Cont.

pτ =
1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Dv

(1− x([u]))

)

=
1− x(A)

x(A)

∏
v∈V (τ)

 x([v])

1− x([v])

∏
u∈Γ+([v])

(1− x([u]))


=

1− x(A)

x(A)

∏
v∈V (τ)

x([v])
∏

u∈Γ([v])

(1− x([u]))



=
1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 34 / 40



Probability of Generating a Witness Tree Cont.

pτ =
1

x(A)

∏
v∈V (τ)

(
x([v])

∏
u∈Dv

(1− x([u]))

)

=
1− x(A)

x(A)

∏
v∈V (τ)

 x([v])

1− x([v])

∏
u∈Γ+([v])

(1− x([u]))


=

1− x(A)

x(A)

∏
v∈V (τ)

x([v])
∏

u∈Γ([v])

(1− x([u]))


=

1− x(A)

x(A)

∏
v∈V (τ)

x′([v])

Ajay Sandhu (COMP5112) Algorithmic Lovasz Local Lemma November 13, 2024 34 / 40



Equivalent Definition of NA

Recall NA is number of times event A is resampled.

Observation: Every witness tree that occurs in a log is distinct.

Thus, equivalently...

NA is the number of distinct witness trees with a root labeled A
which occur in the execution log.
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Equivalent Definition of NA Cont.

Let TA be the set of all proper witness trees with a root labeled A.

Let indicator random variable Wτ be

Wτ =

{
1 if τ occurs in L

0 otherwise

Thus, we can represent NA as

NA =
∑
τ∈TA

Wτ
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Putting It All Together

E(NA) = E

∑
τ∈TA

Wτ



=
∑
τ∈TA

E(Wτ )

=
∑
τ∈TA

Pr(Wτ )

≤
∑
τ∈TA

∏
v∈V (τ)

Pr ([v])

≤
∑
τ∈TA

∏
v∈V (τ)

x′([v])

=
∑
τ∈TA

x(A)

1− x(A)
pτ
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Putting It All Together Cont.

E(NA) ≤
∑
τ∈TA

x(A)

1− x(A)
pτ

=
x(A)

1− x(A)

∑
τ∈TA

pτ

E(NA) ≤ x(A)

1− x(A)
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Summary

In a probability space where events have limited probability and
dependence, we can show that it is not only possible that they all
do not happen, but actually efficiently construct the desired object.

Thanks.
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