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Min Cost st-cut



Min Cost s — ¢ cut in a Graph

Input: An undirected graph G = (V, E)) on n vertices and each edge has a
positive weight w : E — R™. It will be easier to think of G as a complete
graph K,, as all the edges in K,, \ G are assigned a weight of 0. Two specific
vertices s and ¢ of G.

Output: Find a set of edges C' C E of minimum total weight so that the graph
G’ = (V, E\ C) has no path that between s and t. l.e., C forms a cut of
minimum weight that separates s and .




Towards LP Formulation

- Assume C'is a cut.
- Define an indicator variable z. for each edge e as follows:

1, ifeeC,
Te =
0, otherwise
Observations:

1. Cost of Cut equals > zcwe.

ecE
2. Length of any path n (s, t) joining s and ¢ is > 1. Length of 7 is defined as
the sum total of z.’s values of the edges of .



Metric Property

Metric Property
The variables z.’s assigned to the edges of G satisfy the metric property.




Linear Programming Formulation

Problem: Given a complete graph G = (V, E), where edges have
non-negative weights e : £ — R™, and two vertices s and ¢, find the cut of

minimum total weight that separates s and t.

(Integer) Metric LP Formulation

min ) weke
ecE

Subject to:

1. Membership in the Cut: For each edge e € E, z. € {0,1}

2. Cut Constraint: =4 > 1.

3. Triangle Inequality: For every set of three distinct vertices u, v, w € V:

Tuw + Twy = Tuw

Relaxed LP
Replace the constraint z. € {0,1} by 0 < z. < 1.



Relaxed Metric LP

min Y wexe
ecE

Subject to:

1. Foreachedgee € E,0<z. <1
2. x5t > 1.

3. For every set of three distinct vertices u, v, w € V: Zyw + Twv > Tyw

After solving the Relaxed LP, let z. € [0, 1] be the assignment of = values to

eachedgee € E,and letz* = > wez. be the value of the objective function.
e€E

Note that z. values satisfy:

1. Triangle Inequality
2. For any path in G between s and ¢, the length of the path is > 1.
3. The cost of an optimal min cut in G is at least z*.



Obtaining a Cut from Relaxed LP

Method to find the edges in the cut:

Step 1: Solve the Relaxed Metric LP to obtain z. values for each
edgee € E.

Step 2: For each vertex v € V, find the shortest distance d(s, v) from
s with respect to z. values on edges.

Step 3: Choose an arbitrary value R € (0,1).

Step 4: For each edge e = (uv) € E (assume (s, u) < (s, v)), place
einthe cutif 6(s,u) < R < d(s,v).

Step 5: Return the edges in the cut.




Cost of the Cut

Claim
The expected sum total of the weights of the edges in the cut is at most z*.

Proof: Let C be the collection of edges in the cut with respectto R € (0, 1).
Consider an arbitrary edge e = (uv) € E.
What is the probability that e € C'?

ee€ Cifd(s,u) < R<d(s,v),i.e. R € (0(s,u),0(s,v))
Therefore, Pr(e € O) = 202000 — (5 v) — §(s, u).
Because of the triangle inequality 6(s,v) — (s, u) < .

Thus, Pr(e € C) < z..

Elcost(C)] = > wePr(e € C) < Y wewe = 2". a
e€cE ecE



Finding an optimal Cut

- Notice that when R ranges from 0 to 1, one by one vertices are added to the
component containing s.

- In all there are n = |V| such events

- We can find all the events and return the cut that minimizes the total weight.

Observe:
1. If for some R the cost of the cut is > z*, than there must be a cut for

which the cost < z*, since the average (i.e. expected) value is z*

2. The cost of any cut can’t be smaller than z* (as z* is the objective value
of relaxed LP) = the cut returned by the method is of optimal cost for
any R € (0,1)

Theorem
We can find an optimal cut in polynomial time using the Metric LP relaxation.



Multiway Min Cut



Multiway Cuts

Input: An undirected (complete) graph G = (V, E) on n vertices and each
edge has a positive weight w : £ — Rt. Aset T = {s1,...,sx} C Vof k
vertices called terminals.

Output: Find a set of edges C' C E of minimum total weight so that the graph
G’ = (V,E\ C) has no path between any pair of terminals in 7.




Triangle Inequality

Edges in the Cut
Let C be a multiway cut that separates every pair of terminals. Define an
indicator variable z. for each edge e as follows:

1, ifeeC,

Te = .
0, otherwise

The assignment of z. values to each edge satisfies:

1. Cost of Multiway Cut equals Y zecwe.

ecE
2. For any pair of distinct terminals s;, s; € T, the length of any path
m(si, 8;) joining s; and s; is > 1.
3. z. values satisfy the triangle inequality. I.e., for any three distinct vertices

U, U, W €V, Ty + Tww > Tuw-



Linear Programming Formulation for Multiway Cuts

Problem: Given a complete graph G = (V, E), where edges have
non-negative weights e : £ — R", and a set 7' C V of k terminals, find the
cut of minimum total cost that separates every pair of terminals.

(Integer) Metric LP Formulation

min ) Wee
ecE

Subject to:

1. Membership in the Cut: For each edge e € E, z. € {0,1}

2. Cut Constraint: For every distinct pair s;,s; € T', 25,5, > 1.

3. Triangle Inequality: For every set of three distinct vertices u, v, w € V:

Luw alx Lwwv 2 Tuv

Relaxed LP
Replace the constraint z. € {0,1} by 0 < z. < 1.



Method for finding the edges in the cut

Step1: C 0

Step 2: Solve the Relaxed Metric LP to obtain z. values for each
edgee € F.

Step 3: Choose an arbitrary value R € (0,1/2).

Step 4: For each vertex s; € T, find the shortest distances d(s;, v)
from s; with respect to z. values on edges. For each edge
e = (uv) € E (assume d(s;,u) < d(s;,v)), place e in the cut C
if 6(si,u) < R < d(si,0).

Step 5: Return the set of edges C.

£
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Non-overlapping Balls

Let s; € T be a terminal, and let R € (0,1/2).
Define B(si, R) = {v € V[d(ss,v) < R}.
B(s;, R) consists of all the vertices that are within the distance R of s;.

Disjointness of B(s;, R) and B(s;, R)

Let s;,s; € T be two distinct terminals and let B(s;, R) and B(s;, R) be the
set of vertices within distance of R € (0,1/2) of s; and s;, respectively.
Then, B(s;, R)N B(sj, R) =0

Observation 1
Consider any edge e = (wv) € E, where u € B(s;, R). The edge e € C if
v & B(si, R).



Feasibility

Observation 2
The cut C returned by the method is a feasible multiway cut.

Proof: We need to show that there is no path between any pair of distinct
terminals s;, s; € T in the graph G — C.

By the 2nd constraint of LP, =, > 1.

From the triangle inequality any path = (s;, s;) between s; and s; in G will
have length > 1. Alternatively, for any vertex w € V, §(s;, w) + d(s;, w) > 1.

Distance between any two vertices in a ball B(s;, R) is < 1.

Thus, for any ball B(s;, R), only terminal that is in B(s;, R) is s, i.e.,
B(Si,R) MYE =G5

Hence each connected component of G\ C contains at most one terminal.
O



Bounding Probability of an Edge to be in C

Observation 3

Let e = (u,v) be an edge in G. Pr(e € C) < 2z..
Proof: Define sets X1,

..., X, where X; = {v € V|§(ss,v) < 1/2}.
Note that for any pair of distinct sets X;, X;, X; N X; = 0 and B(s;, R) C X;.

For the edge ¢ = (u, v), one of the following cases occurs

Case 1: None of the endpoints u, v are in any set.

(= e¢g¢Cand Pr(ee C)=0 < 2x.)

Case 2: Both u, v are in the same set, say X;.

Case3: ue X;andv e V\ X;.

We need to estimate Pr(e € C) for Cases 2 and 3.



Probability of an Edge to be in C (contd.)

Case 2: u,v € X;. Assume 6(s;,u) < 6(s4,v).
We know R € (0,1/2).
e = (u,v) will be in the cut C'if 6(s;,u) < Rand §(s;,v) > R.
By triangle inequality we know that 6(s;, v) — §(s:,u) < xe.
Since we are choosing R uniformly at random in (0, 1/2),
Pr(eeC) = 75(5“1’);6(5““) < 2.

2

Case3:uec X;andv € V' \ X,.

We know §(s;,u) < 1/2 and §(s;,v) > 1/2.

By triangle inequality we know that §(s;, v) — 6(ss, u) < ze.

e = (u,v) will be in the cut C'if 6(si, u) < R.

Pr(e € C) = Pr(R € (6(si,u),1/2)) < 22559 < o1 _ (s, u)) <
2(6(s3,v) — 6(s3, %)) < 2te. ’

O
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I—Probability of an Edge to be in C (contd.)

Note: If v € X; and v € X, then part of e lies in B(s;,1/2) and partin B(s;,1/2).
Observe that (1/2 — 6(sq,u)) + (1/2 — 6(s;5,v)) < Te.
Pr(ee C) < 2((1/2 — 6(si,u)) + (1/2 — 6(si,u))) < 2ze.



Expected Cost of the Cut

Observation 4

The expected weight of the edges in the multiway cut is at most 2z*, where
z* is the value of the objective function returned by the LP relaxation

(2" = > weme).

ecE

Proof: Let C be the collection of edges in the cut with respectto R € (0,1/2).

We have already seen that for an arbitrary edge e € E, Pr(e € C) < 2z..

Elcost(C)]

Z wePr(e € C)

eckE

E We X 2Te

eckE

2 Z WeTe

ecE
22" O



2-approximation of Multiway cut

Theorem

Let G = (V, E) be a simple (complete) graph where each edge has a
non-negative real weight. Let 7' C V' be a set of terminals. We can find a
set C' C E with the following properties:

1. G — C has no path connecting any pair of terminals.

2. The total weight of the edges in C is at most 2 times the weight of an
optimal multiway cut.

3. We can determine C'in polynomial time using the solution of the relaxed
LP.

20



Integrality Gap

Consider an unweighted star graph with k& + 1 vertices. It consists of k-leaves
and all of them are connected to a central node.
Let the k leaves constitute the set T' of terminals.

Cost of Optimal solution = k — 1 (remove any set of £k — 1 edges.)
Cost of relaxed LP is k/2 (set cost of each edge to 1/2).

Approximation Factor = 571 = 2(1 — 1)

2
Using this approach, we can’t do better in the worst case (termed as the
integrality gap).

Remark: A different LP relaxation yields a g-approximation.

21
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Multicuts in General Graphs

Input: A (complete) graph G = (V, E) with non-negative weights on edges
and a set of k-vertex pairs (s1,t1), (s2,t2),. .., (Sk, k).

Output: A set of edges C' C FE of minimum total weight so that G'\ C has no
path between s; and ¢; fori =1,... k.

22



Edges in the Cut

Edges in the Cut
Let C' be a multiway cut that separates every pair
(s1,t1), (s2,t2), ..., (sk, tr). Define an indicator variable z. for each edge e
as follows:
1, ifee C,
0, otherwise

The assignment of x. values to each edge satisfies:

1. Cost of Multicut equals > zcwe.

eckE
2. For any pair (s;, t:), length of any path between them is > 1, where the
length of an edge e is its z. value.

3. For any three distinct vertices u, v, w, Tyw + Twe > Tuw-

23



Linear Programming Formulation for MultiCuts

Problem: Given a (complete) graph G = (V, E), where edges have
non-negative weights e : £ — R, and k pairs (s1,t1), (s2,t2), ..., (s&, tx),
find the cut of minimum total weight that separates vertices in each pair.

(Integer) Metric LP Formulation

min ) weke
ecE

Subject to:

1. Membership in the Cut: For each edge e € E, z. € {0,1}
2. Cut Constraint: For every pair (si,t;), zs;¢, > 1.

3. Triangle inequality: For any three distinct vertices u, v, w,

Tuw + Twy = Tuv-

Relaxed LP
Replace the constraint z. € {0,1} by 0 < z. < 1.

24



Algorithm for finding the edges in the cut

Initialize:
1. Choose an R € (0, 1/2), uniformly at random. Initialize the cut C' < 0.
2. Definekblocks X1 =...= X, =0

3. Unmark all the vertices in G.

Main Steps:

Step 1: Compute a random permutation of vertices s, so, . . ., Sk.
WLOG, assume the ordering is s1, s2, . . ., Sk.

Step 2: Let B;(s:, R) be the ball consisting of all the vertices within
distance R of s;.
For each s; in the order of permutation do:
For each unmarked vertex v € B(s;, R), mark v and place it
in the block X;.

Step 2: For each edge e = (u,v) € E, place itinthe cut C if u € X,
and v ¢ X, for some a # 3.

Step 3: Return C.

25



An lllustration
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Observation 1

Xi = B(si, R) \ QB(sj,R).

Observation 2
For each pair s;,t;, 7 =1, ..., k, the following holds:

1. i ¢X1
2. if S; € Xj then ¢; g Xj.

Proof: Since R < 1/2 and zs,+, > 1 (by LP), t; € B(si, R).

Since, X; C B(Si, R) = 3 Q X;

If s; € X;. The set X; is defined by s; = 4(s;,s:) < R < 3.

All vertices in X; are within distance < R of s;.

By triangle inequality, any vertex in X is within distance < 2R < 1 from s,.
Since §(si,t;) > 1, we have t; € X;. O

27



Estimating Probability of ¢ € C

Claim

~

( C) < 2Hyz., Wwhere Hjy, is the k-th Harmonic number, and it equals
1

k
=

Given the Claim, it is easy to see that the expected cost of the cut C' will be
within a factor of O(log k) of an optimal cut that separates & terminal pairs.

Elcost(C)] = E Z w(e):|
ecC
= Z w(e)Pr(e e C) < Z 2Hiwewe = 2Hy 2"
eckE eck
Theorem

Multicuts in a graph can be approximated within a factor of O(log k) in
polynomial time that separates k- terminal pairs.

28



Proof of Claim

Claim
Pr(e € C) < 2Hyx., Where Hy, is the k-th Harmonic number.

- Lete = (u,v).
- We will consider distance from s1,...,sx toe.

- We define the distance from s; to e = (u,v) as
d(si,e) = min(d(si, u), d(si,v)).

- WLOG, assume that the order of vertices according to increasing distance
from e be s1, 2, ..., sk.

- In the random ordering of vertices in s1, . .., sk, consider when an end point
u or v of e gets marked for the first time. Say it is u, and it gets marked by s;.

-u € X; and assume 46 (s;, u) < 6(ss,v).

- We have two cases (a) v € X;, (b) v € X;.

29



Proof Sketch of Claim (contd.)

Case (a): v € X;, i.e. v is also marked by s;. Since both the ends of the edge
e=(w)arein X; = e¢C.

Case (b): v ¢ X;. In this case e € C, and we say s; cuts e.
We want to estimate Pr(s; cuts e).
Observe that s; cuts e because of the following:

1. s; marked u but not v.
2. d(s1,e) < d(s2,e) <--- < d(sk,€).

3. Among all the vertices {s1,..., sk}, s; is the first vertex that marked any
of the end-points of e.

4. In the random order, none of the vertices that have smaller distance to e
than s; appeared. Otherwise, s; won'’t be the first vertex marking an end
of e.

30



An lllustration

Sk

\ 0(si,v)

31



Proof Sketch of Claim (contd.)

1. What is the probability that s; comes before si, ..., s;—1 in a random
permutation?
Answer: .

2. What is the probability that s; cuts e, given that s; comes before
S1,.. .,Sifl?
Answer: The radius R € (0, 1/2) should fall in the range
d(ss,u) < R < (s4,v).
Thus, the probability is < % < £ = 2.

3. What is the probability that s; cuts e?
Answer: 12z..

4. What is the probablllty that e is cut by any of s1,...,5,?

Answer: < Z Pr(s; cuts e) = Z =2z, = 2Hyz..

=il
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