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Motivation

* Tree metrics are favorable from an algorithmic point of view.

* We'd like to approximate any metric with a shortest path tree
metric, with minimal stretch.

* This method improves the prior bound from O(logn*loglogn) to a
tight O(logn) distortion factor.

* Very important result by Jittat Fakcharoenphol, Satish Rao, and
Kunal Talwar from Kasetsart University and UC Berkeley.

* Significant impact on approximation algorithms in numerous
applications.



Application: Metric Labeling

* Used for image segmentation

* The image is modeled as a grid graph
where each pixel is a node.
* Edges connect neighboring pixels
 Can optionally include other edges as well

* Edge weights represent dissimilarity
between pixels

* Objective is to minimize the cost:

Z cost of assigning label to v + Z Wy Xdistance between labels of v and v.

vertices v edges (u,v)



Application: Buy-at-Bulk Network Design

Input: Undirected graph G = (V, F)
e Kdge lengthsl: E — R

e Demands: b(s,t) >0, Vs, t €V

e For cach edge e € E: f.(x) > 0

o f.(x) is subadditive: f.(z +vy) < fe(x) + fe(y)

Output: (s,t)-path Py Vs, t € V
Goal: minimize ) . pl(e)fe(ue); Uw = D, pecp,, O(S:T)



Many metric-based problems

* Group Steiner Tree

* Metric Labeling

* Buy-at-Bulk Network Design
* Vehicle Routing

* Metrical Task System

* Min-Sum Clustering

* Distributed Computing

* K-Server Problem

Such problems become easy with tree metrics.



Tree Metrics

Shortest Paths Metric:
* O(mn) for general graphs

Trees have unique paths.

* Queries take O(logn) time
* Least Common Ancestor
* Path-to-root
* Path Length
 Path Sums



Approximation by Tree Metrics

Generally,
For an embedding f : V — V', the distortion is the minimal D such that:

Vu,v € V,d(u,v) < d(f(u), f(v)) < D -d(u,v)

Input: Undirected graph G = (V. F)
Goal: Compute tree T'= (V, E’) such that shortest paths on T are close to G
dr(u,v)

stretch(e) = for edge e between u, v
de(u, v)

Ideally, we want stretch(e) = polylog(n) Ve



Naive approach: Spanning Tree Metric

//\\ 1//\\

D=2, Not bad. D=0(n). Terrible.



Auxiliary Tree Metric

* Auxiliary trees allow extra nodes.
* “shortcuts”

* More flexible, but tends to compress distances.
» Stretch calculations lose significance.

D<1. Meaningless.
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Hierarchal Tree Metric

Edge from height 7 + 1 to ¢ has weight o’ for some value «.
Here, a« =4
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* Prevents compression, but edge cases inflate distortion bounds.
* (e.g.cycles)

* Clever deterministic methods exist for low average stretch

* Keyingredient for further improvement: Randomization



Approximation by Tree Metrics

Input: Undirected graph G = (V, FE)
Goal: Compute tree T'= (V, E’) such that shortest paths on T are close to G

« Randomized dominating tree metric [\\/
* Introduced by Bartal in 1996, improved in 1998 R

Construct auxiliary tree T" with V' as leaves such that:
T is Dominating: dr(u,v) > dg(u,v) Vu,v (no compression)
E|stretch(e)] = O(lognloglogn)Ve € E (low stretch on average) |




Tight O(logn) Bound

* In 2004, Fakcharoenphol, Rao, Talwar improved Bartal’s stretch from
O(lognloglogn) to O(logn)

* They demonstrated that O(logn) is the optimal bound
* Betterisimpossible unless P=NP

Theorem: In randomized polynomial time: >
We can construct a randomized hierarchal

dominating tree metric such that:
FElstretch(e)] = O(logn)Ve € E (optimal stretch)




The Algorithm

Algorithm. Partition(V,d)

1. Choose a random permutation © of vy, vs, ..., v,.

2. Choose f in [1,2] randomly from the distribution p(x) =

3. Ds<V;i—o0—1.

4. while D;,; has non-singleton clusters do

4.1 pi21P.

4.2 For/=1,2,...,ndo

4.2.1 For every cluster S in D; ;.

4.2.1.1 Create a new cluster consisting of all unassigned
vertices in S closer than f; to n(/).

_1
xIn2°

4.3 [—i—1.
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Analysis: Hierarchal Decomposition

We have constructed a hierarchical decomposition of the metric space to define
the tree metric.

A hierarchical decomposition of (V,d) is a sequence of partitions {P;}i>o
such that:

1. Py is the partition of V' into singleton sets.

2. For each ¢ > 1, P; is a coarser partition than P;_; (i.e., each part in P;_;
is contained in a part in P;).

3. There exists a sequence of scales {A;};>¢ with A; = 2°, such that the
diameter of each part in P; is at most A;.



Analysis: Properties of the Tree Metric

Lemma: The tree metric dp defined by T' dominates the original metric d; that
is, for all w,v € V, dy(u,v) > d(u,v).

Proof. Since clusters are formed by grouping points within a certain radius, the
path in T from u» to v must ascend to the lowest common ancestor (LCA) of
v and v in T'. The edge lengths are non-negative, and the cumulative length
from u to the LCA and then to v is at least d(u,v) because u and v are not in
the same cluster at some level where the cluster diameter is less than d(u,v).

Therefore, dp(u,v) > d(u,v). ]



Bounding the Expected Distance

Observation 1. For any x > 1,

Pr[some b; lies in [x, x + dx)] = dx.

xIn?2

Fix an arbitrary edge (u, v) and show that the expected value of
d7(u, v) is bounded by O(logn) - d(u,v). Constants are not
optimized in this analysis.

Clustering Step at Level /:

» |n each iteration, all unassigned vertices v such that
d(v,p(l)) < b; assign themselves to p(/).

» For initial iterations, both v and v remain unassigned.

» At some step /, at least one of u or v gets assigned to center

p(/).



Edge Settlement and Cutting

Definitions:

» Center w settles edge (u, v) at level i if it is the first center to
which at least one of u or v gets assigned.

» Exactly one center settles any edge (u, v) at any particular
level.

» Center w cuts edge e = (u, v) at level i if it settles e at this
level, but exactly one of u or v is assigned to w at level /.

When w cuts edge (u, v) at level i, the tree length of the edge is
about 212



Defining Contribution

We attribute this length to vertex w and define:
d7(u,v) = Z 1{w cuts (u, v) at level /] - DI+2
:'
where 1[-] is the indicator function.

Clearly,

dr(u,v) < Z d¥(u,v).



Ordering Vertices

Arrange the vertices in V' in order of increasing distance from edge
(u, v) (breaking ties arbitrarily).

Consider the s-th vertex ws in this sequence.
We will upper bound the expected value of d7*(u, v) for an
arbitrary ws.



Conditions for Cutting Edge (u, v )

Without loss of generality, assume d(ws, u) < d(ws, v).

For center ws to cut (u, v), it must be that (see Figure):
(a) d(ws,u) < b; < d(ws, v) for some |.

(b) ws settles edge e at level i.

Centers that can settle

(u,v) for this value of §; |:)’i
S " T\ E center w, can cut (u,v)
duw) KT TR X IR VALIBE IENE
d(v.w) + v \ B | ty vy ilvyvy |l v

2(-3)  o(i2) (1) i



Calculating the Expected Contribution
The contribution to d7*(u, v) when this happens is at most
2i+2 < 8p;.
Consider a particular x € [d(ws, u), d(ws, v)).

Probability Calculations:
» From Observation 1, the probability that some b; lies in

dx.

: dx) i1s at most
[x, x + dx) i most — —

» Conditioned on b; = x, any of wy, ws, ..., ws can settle (u, v)
at level 1.

» The first one among these in the permutation p will settle

(u, v).
» Thus, the probability of event (b), conditioned on (a), is at

1

most —.
S



Bounding the Expected Value

Expected Cost of d7*(u, v):

d(ws,v) 1 1

Eld%(y. < . -—d
[T(ufv)l_/d(wﬁu) By dx

3 d(ws,v)
= ax
sin2 /d(ws,u)
3

" sin2 (d(ws, v) = d(ws, u))

- 8d(u, v).
— sin2

where the last inequality follows from the triangle inequality.



Summing Over All Vertices

Using linearity of expectation, we get:

8d(u,v) 8d(u, v)
sin2 In 2

E[d7(u,v)] < Z - H,,

where H, is the n-th harmonic number.

Since H, <Inn+ 1, we have:

8d(u, v)

In 2

EldT(u,v)] < (Inn+1) = O(log n) - d(u, v).



Conclusion

We have shown that for any edge (u, v), the expected value of
dr(u,v)is O(logn) - d(u, v).

Hence, the expected distortion of the tree metric is O(log n).

With this result, approximation ratios for various problems are
Improved:
» Metric Labeling: O(log k log log k) — O(log k)
» Earthmover LP: O(min(log k, log n))
» Min. cost comm. network: O(log n)
» Group Steiner Tree: O(\log nlog k) — O(log? nlog k)
>

Metrical Task System: O(\log nloglog n) — O(log® nlog log n)

Where A = O(min(log nlog loglog n,log A loglog A))
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