Understanding and Analyzing the Algorithm for Approximating Arbitrary Metrics by Tree Metrics

Adam Koziak

COMP 5112

Motivation

- Tree metrics are favorable from an algorithmic point of view.
- We'd like to approximate any metric with a shortest path tree metric, with minimal stretch.
- This method improves the prior bound from O(logn*loglogn) to a tight O(logn) distortion factor.
- Very important result by Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar from Kasetsart University and UC Berkeley.
- Significant impact on approximation algorithms in numerous applications.

Application: Metric Labeling

- Used for image segmentation
- The image is modeled as a grid graph where each pixel is a node.
	- Edges connect neighboring pixels
	- Can optionally include other edges as well
- Edge weights represent dissimilarity between pixels
- Objective is to minimize the cost:

$$
\quad \text{ost of assigning label to } v + \quad \sum
$$

edges (u,v)

Application: Buy-at-Bulk Network Design

Input: Undirected graph $G = (V, E)$

- Edge lengths $l: E \to \mathbb{R}$
- Demands: $b(s,t) \geq 0, \ \forall s,t \in V$
- For each edge $e \in E$: $f_e(x) > 0$
- $f_e(x)$ is subadditive: $f_e(x+y) \leq f_e(x) + f_e(y)$

Output: (s, t) -path P_{st} $\forall s, t \in V$ **Goal:** minimize $\sum_{e \in E} l(e) f_e(u_e)$, $u_w = \sum_{s,t: e \in p_{st}} b(s,t)$

Many metric-based problems

- Group Steiner Tree
- Metric Labeling
- Buy-at-Bulk Network Design
- Vehicle Routing
- Metrical Task System
- Min-Sum Clustering
- Distributed Computing
- K-Server Problem

• ...

Such problems become easy with tree metrics.

Tree Metrics

Shortest Paths Metric:

• O(mn) for general graphs

Trees have unique paths.

- Queries take O(logn) time
	- Least Common Ancestor
	- Path-to-root
	- Path Length
	- Path Sums

Approximation by Tree Metrics

Generally,

For an embedding $f: V \to V'$, the distortion is the minimal D such that:

$$
\forall u, v \in V, d(u, v) \le d'(f(u), f(v)) \le D \cdot d(u, v)
$$

Input: Undirected graph $G = (V, E)$ **Goal:** Compute tree $T = (V, E')$ such that shortest paths on T are close to G

$$
stretch(e) = \frac{d_T(u, v)}{d_G(u, v)}
$$
 for edge e between u, v

Ideally, we want stretch(e) = polylog(n) $\forall e$

Naïve approach: Spanning Tree Metric

1

D=2, Not bad.

D=O(n). Terrible.

Auxiliary Tree Metric

- Auxiliary trees allow extra nodes.
	- "shortcuts"
- More flexible, but tends to compress distances.
	- Stretch calculations lose significance.

Hierarchal Tree Metric

Edge from height $i+1$ to i has weight α^i for some value α . Here, $\alpha = 4$

- Prevents compression, but edge cases inflate distortion bounds.
	- (e.g. cycles)
- Clever deterministic methods exist for low average stretch
- Key ingredient for further improvement: **Randomization**

Approximation by Tree Metrics

Input: Undirected graph $G = (V, E)$ **Goal:** Compute tree $T = (V, E')$ such that shortest paths on T are close to G

- Randomized dominating tree metric
- Introduced by Bartal in 1996, improved in 1998

Construct auxiliary tree T with V as leaves such that: T is **Dominating**: $d_T(u, v) \geq d_G(u, v) \quad \forall u, v$ (no compression) $E[stretch(e)] = O(log n log log n) \forall e \in E$ (low stretch on average)

Tight O(logn) Bound

- In 2004, Fakcharoenphol, Rao, Talwar improved Bartal's stretch from O(lognloglogn) to O(logn)
- They demonstrated that O(logn) is the **optimal bound**
	- Better is impossible **unless P=NP**

In randomized polynomial time: Theorem: We can construct a randomized hierarchal dominating tree metric such that: $E[stretch(e)] = O(log n) \forall e \in E$ (optimal stretch)

The Algorithm

Algorithm. Partition (V,d)

- 1. Choose a random permutation π of $v_1, v_2, ..., v_n$.
- 2. Choose β in [1,2] randomly from the distribution $p(x) = \frac{1}{x \ln 2}$.
- 3. $D_{\delta} \leftarrow V; i \leftarrow \delta 1$.
- 4. while D_{i+1} has non-singleton clusters do
- 4.1 $\beta_i \leftarrow 2^{i-1} \beta$.
- 4.2 For $l = 1, 2, ..., n$ do
- $4.2.1$ For every cluster S in D_{i+1} .
- $4.2.1.1$ Create a new cluster consisting of all unassigned vertices in S closer than β_i to $\pi(l)$.
- 4.3 $i \leftarrow i-1$.

The Algorithm $\ddot{}$

The Algorithm

Analysis: Hierarchal Decomposition

We have constructed a hierarchical decomposition of the metric space to define the tree metric.

A hierarchical decomposition of (V, d) is a sequence of partitions $\{\mathcal{P}_i\}_{i>0}$ such that:

- 1. P_0 is the partition of V into singleton sets.
- 2. For each $i \geq 1$, \mathcal{P}_i is a coarser partition than \mathcal{P}_{i-1} (i.e., each part in \mathcal{P}_{i-1} is contained in a part in \mathcal{P}_i).
- 3. There exists a sequence of scales $\{\Delta_i\}_{i\geq 0}$ with $\Delta_i = 2^i$, such that the diameter of each part in \mathcal{P}_i is at most Δ_i .

Analysis: Properties of the Tree Metric

Lemma: The tree metric d_T defined by T dominates the original metric d; that is, for all $u, v \in V$, $d_T(u, v) \geq d(u, v)$.

Proof. Since clusters are formed by grouping points within a certain radius, the path in T from u to v must ascend to the lowest common ancestor (LCA) of u and v in T . The edge lengths are non-negative, and the cumulative length from u to the LCA and then to v is at least $d(u, v)$ because u and v are not in the same cluster at some level where the cluster diameter is less than $d(u, v)$. Therefore, $d_T(u, v) \geq d(u, v)$.

Bounding the Expected Distance

Observation 1. For any $x \ge 1$,

Pr[some
$$
b_i
$$
 lies in $[x, x + dx]$] = $\frac{1}{x \ln 2} dx$.

Fix an arbitrary edge (u, v) and show that the expected value of $d_{\mathcal{T}}(u, v)$ is bounded by $O(\log n) \cdot d(u, v)$. Constants are not optimized in this analysis.

Clustering Step at Level i:

- In each iteration, all unassigned vertices v such that $d(v, p(l)) \leq b_i$ assign themselves to $p(l)$.
- For initial iterations, both u and v remain unassigned.
- At some step *l*, at least one of *u* or *v* gets assigned to center $p(l)$.

Edge Settlement and Cutting

Definitions:

- Example 2 Center w settles edge (u, v) at level i if it is the first center to which at least one of u or v gets assigned.
- Exactly one center settles any edge (u, v) at any particular level.
- ► Center w cuts edge $e = (u, v)$ at level i if it settles e at this level, but exactly one of u or v is assigned to w at level i.

When w cuts edge (u, v) at level i, the tree length of the edge is about 2^{i+2} .

Defining Contribution

We attribute this length to vertex w and define:

$$
d^w_\mathcal{T}(u,v) = \sum_i \mathbf{1}[w \text{ cuts } (u,v) \text{ at level } i] \cdot 2^{i+2},
$$

where $1[\cdot]$ is the indicator function.

Clearly,

$$
d_{\mathcal{T}}(u,v) \leq \sum_{w} d_{\mathcal{T}}^{w}(u,v).
$$

Ordering Vertices

Arrange the vertices in V in order of increasing distance from edge (u, v) (breaking ties arbitrarily).

Consider the s-th vertex w_s in this sequence. We will upper bound the expected value of $d^{\mathcal{W}_s}_{T}(u, v)$ for an arbitrary w_s .

Conditions for Cutting Edge (u, v)

Without loss of generality, assume $d(w_s, u) \leq d(w_s, v)$. For center w_s to cut (u, v) , it must be that (see Figure): (a) $d(w_s, u) \le b_i \le d(w_s, v)$ for some *i*. (b) w_s settles edge e at level i.

Calculating the Expected Contribution

The contribution to $d^{\mathcal{W}_s}_{\mathcal{T}}(u, v)$ when this happens is at most $2^{i+2} < 8b_i$.

Consider a particular $x \in [d(w_s, u), d(w_s, v)]$.

Probability Calculations:

- From Observation 1, the probability that some b_i lies in $[x, x + dx)$ is at most $\frac{1}{x \ln 2} dx$.
- ► Conditioned on $b_i = x$, any of $w_1, w_2, ..., w_s$ can settle (u, v) at level *i*.
- \blacktriangleright The first one among these in the permutation p will settle (u, v) .
- \blacktriangleright Thus, the probability of event (b), conditioned on (a), is at most $\frac{1}{s}$.

Bounding the Expected Value

Expected Cost of $d^{\mathcal{W}_s}_{\mathcal{T}}(u, v)$:

$$
\mathbb{E}[d_{\mathcal{T}}^{w_s}(u,v)] \leq \int_{d(w_s,u)}^{d(w_s,v)} \frac{1}{x \ln 2} \cdot 8x \cdot \frac{1}{s} dx
$$

$$
= \frac{8}{s \ln 2} \int_{d(w_s,u)}^{d(w_s,v)} dx
$$

$$
= \frac{8}{s \ln 2} (d(w_s,v) - d(w_s,u))
$$

$$
\leq \frac{8d(u,v)}{s \ln 2},
$$

where the last inequality follows from the triangle inequality.

Summing Over All Vertices

Using linearity of expectation, we get:

$$
\mathbb{E}[d_T(u,v)] \leq \sum_{s=1}^n \frac{8d(u,v)}{s\ln 2} = \frac{8d(u,v)}{\ln 2} \cdot H_n,
$$

where H_n is the *n*-th harmonic number.

Since $H_n \leq \ln n + 1$, we have:

$$
\mathbb{E}[d_{\mathcal{T}}(u,v)] \leq \frac{8d(u,v)}{\ln 2}(\ln n + 1) = O(\log n) \cdot d(u,v).
$$

Conclusion

We have shown that for any edge (u, v) , the expected value of $d_{\mathcal{T}}(u, v)$ is $O(\log n) \cdot d(u, v)$.

Hence, the expected distortion of the tree metric is $O(\log n)$.

With this result, approximation ratios for various problems are improved:

- A Metric Labeling: $O(\log k \log \log k) \rightarrow O(\log k)$
- Earthmover LP: $O(\min(\log k, \log n))$
- Min. cost comm. network: $O(\log n)$
- Group Steiner Tree: $O(\lambda \log n \log k) \to O(\log^2 n \log k)$
- Metrical Task System: $O(\lambda \log n \log \log n) \rightarrow O(\log^2 n \log \log n)$

Where $\lambda = O(\min(\log n \log \log \log n, \log \Delta \log \log \Delta))$

References

- [1] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by tree metrics. Journal of Computer And System Sciences, $69:485-497, 2004.$
- [2] A. Maheshwari. Notes on Algorithm Design. 2024.