Local Search

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

[Problem Statement](#page-2-0)

[Max-Cut](#page-5-0)

k[-Median](#page-18-0)

[Approximating Geometric Hitting Set](#page-35-0)

[References](#page-50-0)

[Problem Statement](#page-2-0)

Techniques for Designing Approximation Algorithms

- Greedy
- Random Permutation
- Local Search
- Linear Programming Relaxation
- \bullet ...

An alternate to greedy algorithms for combinatorial optimization problems.

Approach:

- Find a feasible solution
- Keep swapping a constant number of objects from the current (local) solution to improve the objective function while maintaining the feasibility
- Stop when no more local improvements can be made
- Output the local solution

Analysis:

- Termination
- Quality of the resulting solution

Sample Problems:

- 1. Single Swaps:
	- 2-approximation algorithm for max cuts in graphs.
	- -5 -approximation algorithm for metric k -median problem.
- 2. Multiple Swaps:
	- $-(1 + \epsilon)$ -approximation algorithm for geometric hitting set.

[Max-Cut](#page-5-0)

Max-Cut Problem:

Input: An undirected graph $G = (V, E)$.

Output: Find a subset $S \subset V$ such that the number of edges between S and $\overline{S} = V \setminus S$ is maximized. The subset S maximizing the number of edges between S and \overline{S} is called the *Max-Cut* of G.

Weighted Max-Cut:

Input: An undirected graph $G = (V, E)$, where each edge has a positive integer weight.

Output: Find a subset $S \subset V$ such that the sum total of the weights on the edges between S and $\bar{S} = V \setminus S$ is maximized. The subset S maximizing the total weight of edges between S and \overline{S} is called the *Weighted Max-Cut* of G .

Input: An undirected graph $G = (V, E)$.

Output: Find a subset $S \subset V$ such that the number of edges between S and $\overline{\overline{S} = V \setminus S}$ is maximized. Let $cut(S, \overline{S})$ denote the number of edges between S and \overline{S} .

A Local Improvement Algorithm

- 1. Pick any vertex $v \in V$ and set $S \leftarrow \{v\}$ and $\overline{S} = V \setminus S$.
- 2. If $\exists v \in \overline{S}$ such that $cut(S \cup \{v\}, \overline{S} \setminus \{v\}) > cut(S, \overline{S})$, set $S \leftarrow S \cup \{v\}$ and $\overline{S} \leftarrow \overline{S} \setminus \{v\}$.
- 3. If $\exists v \in S$ such that $cut(S \setminus \{v\}, \overline{S} \cup \{v\}) > cut(S, \overline{S})$, set $S \leftarrow S \setminus \{v\}$ and $\overline{S} \leftarrow \overline{S} \cup \{v\}$.
- 4. Repeat Steps 2 and 3 until the size of the cut doesn't increases.
- 5. Report $S, \overline{S}, cut(S, \overline{S}).$

Analysis of the Local Improvement Algorithm

- 1. Pick any vertex $v \in V$ and set $S \leftarrow \{v\}$ and $S = V \setminus S$.
- 2. If $\exists v \in \overline{S}$ such that $cut(S \cup \{v\}, \overline{S} \setminus \{v\}) > cut(S, \overline{S})$, set $S \leftarrow S \cup \{v\}$ and $\overline{S} \leftarrow \overline{S} \setminus \{v\}$.
- 3. If $\exists v \in S$ such that $cut(S \setminus \{v\}, \overline{S} \cup \{v\}) > cut(S, \overline{S})$, set $S \leftarrow S \setminus \{v\}$ and $\overline{S} \leftarrow \overline{S} \cup \{v\}$.
- 4. Repeat Steps 2 and 3 until the size of the cut doesn't increases.
- 5. Report $S, \overline{S}, cut(S, \overline{S})$.

Termination

The algorithm terminates in $O(|E|)$ steps.

Proof: In each iteration of Steps 2 or 3, the size of the cut increases by at least 1. Since, the max-cut size is at most $|E|$, the algorithm terminates in $O(|E|)$ iterations. \Box

Analysis of the Local Improvement Algorithm

Size of Cut

The cut computed by the local improvement algorithm has $\geq \frac{|E|}{2}$ edges.

Proof: Let (S, \overline{S}) be the cut computed by the algorithm.

Consider any vertex $v \in S$. Let v has d_v neighbors. Using the local-optimality condition, at least $\frac{d_v}{2}$ neighbors of v are in \bar{S} (otherwise, we can improve the solution).

The same argument applies for any vertex $v \in \overline{S}$. Thus,

$$
cut(S, \bar{S}) = \frac{1}{2} \sum_{v \in V} v's \text{ edges crossing the cut}
$$

$$
\geq \frac{1}{2} \sum_{v \in V} \frac{d_v}{2}
$$

$$
= \frac{1}{2} \frac{2|E|}{2} = \frac{|E|}{2} \quad \Box
$$

Theorem

The local improvement algorithm is a 2-approximation algorithm for the Max-Cut problem. The algorithm runs in polynomial time.

Consider the Weighted Max-Cut Problem

Input: An undirected graph $G = (V, E)$, where each edge has a positive integer weight.

Output: Find a subset $S \subset V$ such that the sum total of the weights on the edges between S and $\overline{S} = V \setminus S$ is maximized.

Question: Can we use the local improvement algorithm to find an approximation for the weighted max-cut?

For each edge $e \in E$, let w_e be its positive integer weight. For a subset $S \subset V$, define the weight of $cut(S, \bar{S})$ as $w(S,\bar{S}) = \sum$ $e=uv\in E, u\in S, v\in \bar{S}$ w_{e} .

Local Improvement Algorithm (with weights):

- 1. Pick any vertex $v \in V$ and set $S \leftarrow \{v\}$ and $\overline{S} = V \setminus S$.
- 2. If $\exists v \in \overline{S}$ such that $w(S \cup \{v\}, \overline{S} \setminus \{v\}) > w(S, \overline{S})$, set $S \leftarrow S \cup \{v\}$ and $\overline{S} \leftarrow \overline{S} \setminus \{v\}$.
- 3. If $\exists v \in S$ such that $w(S \setminus \{v\}, \overline{S} \cup \{v\}) > w(S, \overline{S})$, set $S \leftarrow S \setminus \{v\}$ and $\overline{S} \leftarrow \overline{S} \cup \{v\}$.
- 4. Repeat Steps 2 and 3 until the weight of the cut stops increasing.
- 5. Report $S, \overline{S}, w(S, \overline{S})$.

Analysis

Let
$$
W = \sum_{e \in E} w_e
$$
.

• Termination: In each iteration, $w(S, \overline{S})$ increases by at least one unit, as all weights are integers.

 \implies Algorithm terminates in at most $O(W)$ steps.

• Approximation factor - Is it true that for each vertex $v \in S$,

 $\sum \qquad w_e \geq \frac{1}{2} \quad \sum \quad w_e$? $e=uv\overline{\in}E.u\overline{\in}\overline{S}$ ² $e=vw \in E$

• Is the running time polynomial in input parameters? What if we double the weight of an edge?

Let $\epsilon > 0$ be a parameter, and let $n = |V|$.

- 1. Pick the vertex $v \in V$ that has the maximum sum total of the weights of edges incident to it. Set $S \leftarrow \{v\}$ and $\overline{S} = V \setminus S$.
- 2. If $\exists v \in \overline{S}$ such that $w(S\cup \{v\},\bar S\setminus \{v\})\geq (1+\frac{\epsilon}{n})w(S,\bar S)$, set $S\leftarrow S\cup \{v\}$ and $\bar S\leftarrow \bar S\setminus \{v\}.$
- 3. If $\exists v \in S$ such that $w(S \setminus \{v\}, \bar{S} \cup \{v\}) \geq (1 + \frac{\epsilon}{n})w(S, \bar{S}),$ set $S \leftarrow S \setminus \{v\}$ and $\bar{S} \leftarrow \bar{S} \cup \{v\}.$
- 4. Repeat Steps 2 and 3 until the weight of the cut stops increasing.
- 5. Report S, \overline{S} and $w(S, \overline{S})$.

We make following observations:

- 1. Let (S,\overline{S}) be the cut returned by the algorithm.
- 2. For each vertex $v \in S$, by local optimality, we have $w(S, \overline{S}) \geq w(S \setminus \{v\}, \overline{S} \cup \{v\}) - \frac{\epsilon}{n}w(S, \overline{S})$ $\implies w(v, \bar{S}) \geq w(v, S) - \frac{\epsilon}{n}w(S, \bar{S})$ (*)
- 3. Similarly, for each vertex $v \in \overline{S}$, we have $w(S, \overline{S}) \geq w(S \cup \{v\}, \overline{S} \setminus \{v\}) - \frac{\epsilon}{n}w(S, \overline{S})$ $\implies w(v, S) \geq w(v, \overline{S}) - \frac{\epsilon}{n}w(S, \overline{S})$ (**)
- 4. Compute the sum total of all the inequalities $(*)$ over all the vertices in S: $w(S, \bar{S}) \ge \sum_{v \in S} w(v, S) - |S| \frac{\epsilon}{n} w(S, \bar{S}) = 2 \sum_{e=uv; u, v \in S} w(e) - |S| \frac{\epsilon}{n} w(S, \bar{S})$

Analysis of Modified Local Improvement Algorithm (contd.)

- Similarly, the sum total of all the inequalities (**) for all the vertices in S $w(S, \overline{S}) \geq 2$ $\sum_{z=1}^{\infty} w(e) - |\overline{S}| \frac{\epsilon}{n} w(S, \overline{S})$ $e=uv; u, v\in \bar{S}$

- Adding the last two inequalities we obtain $2w(S,\bar{S}) \ge 2 \sum_{e=uv;u,v \in S} w(e) + 2 \sum_{e=uv,u}$ $e=uv,u,v\in\bar{S}$ $w(e) - |S| \frac{\epsilon}{n} w(S, \overline{S}) - |\overline{S}| \frac{\epsilon}{n} w(S, \overline{S})$ Simplifying,

$$
w(S, \bar{S}) \geq \sum_{e=uv; u, v \in S} w(e) + \sum_{e=uv; u, v \in \bar{S}} w(e) - \frac{\epsilon}{2} w(S, \bar{S})
$$

=
$$
(W - w(S, \bar{S})) - \frac{\epsilon}{2} w(S, \bar{S})
$$

Thus, $w(S, \bar{S}) \ge \frac{W}{2 + \frac{\epsilon}{2}}$ 2 Weight of any cut is upper bounded by W , including the weight of an optimal cut. Thus, we have

Claim

The modified local improvement algorithm is $\frac{1}{2+\epsilon}$ approximation algorithm for the weighted max-cut problem.

Next we analyze the running time.

Analysis of Modified Local Improvement Algorithm (contd.)

- Assume that the algorithm runs for k iterations and the sets computed by the algorithm are $S_0, S_1, S_2, \ldots, S_k$.
- Observe that $w(S_i, \bar{S}_i) \geq (1 + \frac{\epsilon}{n})w(S_{i-1}, \bar{S}_{i-1}),$ for $i = 1, ..., k$. $\implies w(S_k, \bar{S}_k) \ge (1 + \frac{\epsilon}{n})^k w(S_0, \bar{S}_0)$
- We know that $w(S_0, \bar{S_0}) \geq \frac{W}{n}$ and $W(S_k, \bar{S_k}) \leq W$.

• Thus,
$$
W \ge W(S_k, \bar{S}_k) \ge (1 + \frac{\epsilon}{n})^k w(S_0, \bar{S}_0) \ge (1 + \frac{\epsilon}{n})^k \frac{W}{n}
$$

\n $\implies k \le \frac{\log n}{\log(1 + \frac{\epsilon}{n})}$

If $\frac{\epsilon}{n} < 1$, $\log(1 + \frac{\epsilon}{n}) \ge \frac{\epsilon}{2n}$ (i.e., $\log(1 + x) > x/2$ for small values of x).

Thus, $k \le \frac{\log n}{\log(1+\frac{\epsilon}{n})} \le 2\frac{n}{\epsilon} \log n$.

Theorem

A $\frac{1}{2+\epsilon}$ approximation of maximum weight cut can be computed in polynomial time. The running time depends on $\frac{1}{\epsilon}, |V|$, and $|E|.$

k**[-Median](#page-18-0)**

Let $G = (V, E)$ be a complete graph on n vertices, where the costs on edges $(d: V \times V \rightarrow \mathbb{R}^+)$ satisfy the metric properties:

- $\forall u \in V : d(u, u) = 0$
- $\forall u, v \in V : d(u, v) = d(v, u)$
- $\forall u, v, w \in V : d(u, v) \leq d(u, w) + d(w, v)$

Definitions:

- 1. Facilities: Let $F \subset V$ such that $|F| = k$.
- 2. Distance to nearest facility: $d(v, F) = \min_{f \in F} d(v, f)$.

3.
$$
cost(F) = \sum_{v \in V} d(v, F)
$$

k-median problem

Given the metric complete graph $G = (V, E)$, find $F \subset V$, $|F| = k$, such that $cost(F)$ is minimum.

An Example: Euclidean distance among points in plane, $k = 5$


```
Input: A metric graph G = (V, E) and an integer 0 < k \leq |V|Output: F \subset V such that |F| = k.
Step 1 (Initialize) F \leftarrow \emptyset. Select any k vertices from V. Add them to
          F as the initial set of k facilities.
Setp 2 (Local improvement step)
          While there exists a pair of vertices (u, v), where u \in V \setminus Fand v \in F, such that cost(F \setminus \{v\} \cup \{u\}) < cost(F),
          F \leftarrow F \setminus \{v\} \cup \{u\}.Step 3 Report F.
```
Approximation Quality

Let F^* be an optimal set of k-facilities for the k-median problem on the metric graph G . The set F returned by the local search algorithm satisfies $cost(F) \leq 5cost(F^*)$, i.e., it results in a 5-approximation.

Swap Pairs

- In Step 2 of the algorithm, if we make a swap (u, v) , then the $cost(F)$ improves, i.e., $cost(F \setminus \{v\} \cup \{u\}) < cost(F)$.
- After the algorithm terminates, there doesn't exist any improving swap pairs. I.e., for any pair of vertices (u, v) , where $u \in V \setminus F$ and $v \in F$, $cost(F \setminus \{v\} \cup \{u\}) \geq cost(F).$
- To show $cost(F) \leq 5cost(F^*)$, we will select a set of specific non-improving swap pairs using the vertices in an optimal solution F^* and the solution F returned by the algorithm.

Let $F^* = (f_1^*, \ldots, f_k^*) \subset V$ be an optimal solution. Let $F = (f_1, \ldots, f_k) \subset V$ is the solution returned by the algorithm.

Define a mapping $\eta: F^* \to F$, that maps each facility (vertex) in F^* to the nearest facility in F.

We partition $F = F_0 \cup F_1 \cup F_{\geq 2}$ based on the in-degree of function η : $F_0 = \{ f \in F | \text{ no facilities in } F^* \text{ maps to } f \}$ $F_1 = \{ f \in F |$ exactly one facility in F^* maps to $f \}$ $F_{\geq 2} = \{ f \in F | \text{ at least two facilities in } F^* \text{ maps to } f \}$

Define the set $S \subset F^* \times F$ consisting of the following non-improving pairs of facilities:

- 1. All pairs corresponding to F_1 are in S. I.e. for each pair (f^*, r) , where $r \in F$ and $f^* \in F^*$ and $\eta^{-1}(r) = f^*,$ $(f^*, r) \in S$.
- 2. For the remaining facilities in F^* , pair them up, and assign each pair to a unique facility in F_0 .

Are there enough facilities in F_0 so that the pairs of the remaining facilities in F^* can be assigned to the unique facilities in F_0 ?

Size of F_0 $|F_0| \geq \frac{|F| - |F_1|}{2}$

Proof: Use the following remarks to arrive at a proof

- $-k = |F| = |F^*|$
- $|F| = |F_0| + |F_1| + |F_{\geq 2}|$
- The number of remaining facilities in F^* are $k |F_1| = |F| |F_1|$.
- Nearest neighbors of the remaining facilities in F^* are among $F_{\geq 2}$.
- Each facility in $F_{\geq 2}$ is near neighbor of at least two facilities of $F^*.$

 \Box

Bounding cost(F) **- Useful Notations**

- Functions $\phi: V \to F$ and $\phi^*: V \to F^*$ maps vertices to the nearest facilities in F and F^* , respectively. If $\phi(v) = r$, than the nearest vertex of v in F is r .
- For any vertex $v \in V$, define the cost to the nearest facility in F^* by $O_v = d(v, F^*) = d(v, \phi^*(v))$. Similarly, define $A_v = d(v, F) = d(v, \phi(v))$.

•
$$
cost(F^*) = \sum_{v \in V} O_v
$$
 and $cost(F) = \sum_{v \in V} A_v$

- Define neighborhoods of facilities as the vertices that they serve. For each facility $f^* \in F^*$, we have $N^*(f^*) = \{v \in V | \phi^*(v) = f^* \}$. Similarly, for $r \in F$, $N(r) = \{v \in V | \phi(r) = f\}$.
- If $F^* = (f_1^*, \ldots, f_k^*)$, then $N^*(f_1^*), \ldots, N^*(f_k^*)$ is a partition of V. Similarly, $N(r_1), \ldots, N(r_k)$ is partition of V with respect to facilities in $F = \{r_1, \ldots, r_k\}.$

Main Claim

Consider a (non-improving) swap pair $(f^*, r) \in S$. Suppose we bring in the facility $f^*\in F^*$ and remove r from F , i.e., $F=F\cup \{f^*\}\setminus \{r\}.$ The cost of the resulting k -median solution satisfies

$$
\sum_{v \in N^*(f^*)} (O_v - A_v) + \sum_{v \in N(r)} 2O_v \ge cost(F \cup \{f^*\} \setminus \{r\}) - cost(F) \quad (1)
$$

Proof comes later.

First we show that by summing Equation [1](#page-27-0) over all the swap pairs in S , we have $cost(F) \leq 5cost(F^*)$ as follows.

5**-approximation Bound From the Main Claim**

Theorem

Suppose for each swap pair $(f^*, r) \in S$ we have $\sum\limits_{v\in N^*(f^*)} (O_v-A_v)+\sum\limits_{v\in N(r)} 2O_v \geq cost(F\cup\{f^*\}\setminus\{r\})-cost(F),$ than $cost(F) \leq 5cost(F^*)$.

Proof:

- 1. Each $f^* \in F^*$ appears exactly once in S, and $\bigcup N^*(f^*)$ partitions $f^*\!\in\!F^*$ $V \implies \sum_{(f^*, r) \in S} \sum_{v \in N^*(f^*)} (O_v - A_v) \leq cost(F^*) - cost(F).$
- 2. Each $r \in F$ appears at most twice in S. Thus,

 $\sum \quad \sum \quad O_v \leq 2cost(F^*)$. (f∗,r)∈S v∈N(r)

- 3. Since each pair in S is non-improving we have $cost(F \cup \{f^*\} \setminus \{r\}) - cost(F) \geq 0$
- 4. Summing for all pairs $(f^*, r) \in S$ the inequality

 \sum $(O_v - A_v) + \sum 2O_v \ge cost(F \cup \{f^*\} \setminus \{r\}) - cost(F)$, and $v \in \overline{N^*(f^*)}$ $v \in N(r)$ apply 1-3, we obtain $cost(F^*) - cost(F) + 2 * 2cost(F^*) \geq 0$. Thus, $cost(F) \leq 5cost(F^*)$) \Box 26

For a swap pair $(f^*, r) \in S$ we want to show \sum $(O_v - A_v) + \sum 2O_v \ge cost(F \cup \{f^*\} \setminus \{r\}) - cost(F).$ $v \in N^*(f^*)$ $v \in N(r)$

Proof Sketch:

- 1. Note that we are swapping r by f^* in F . We are interested to upper bound $cost(F \cup \{f^*\} \setminus \{r\}) - cost(F)$.
- 2. We need to reassign facilities to some of the vertices because of this swap. For example, all vertices in $N(r)$ need to find a facility in $F \cup \{f^*\} \setminus \{r\}.$
- 3. We will assign each vertex in $N^*(f^*)$ to f^* in $F \cup \{f^*\} \setminus \{r\}$. The expression $\sum (O_v - A_v)$ accounts for the difference in the costs, $v \in \overline{N^*(f^*)}$ as we save A_v from their costs but they costs us O_v .

Proof of Main Claim (contd.)

- 5. Note that there may be a vertex $v \in N^*(f^*)$ that ideally isn't served by f^* in $F \cup \{f^*\} \setminus \{r\}$. The reason is that $r' \in F \setminus \{r\}$ may be closer to v than f^* . Nevertheless we assign v to f^* , since we are trying to find an upper bound $(O(v) \geq d(v, r')) \implies O_v - A_v \geq d(v, r') - A_v$).
- 6. All the vertices in $N(r) \cap N^*(f^*)$ are assigned to f^* in $F \cup \{f^*\} \setminus \{r\}$. By the similar upper bound argument, even if for a vertex $v \in N(r) \cap N^*(f^*)$ its nearest neighbor in $F \cup \{f^*\} \setminus \{r\}$ may not be $f^*,$ but the same upper bound argument holds.
- 7. For each vertex $v \in N(r) \setminus N^*(f^*)$, assign it to its nearest neighbor in $F \cup \{f^*\} \setminus \{r\}.$
- 8. How to account for the costs of members in $N(r) \setminus N^*(f^*)$?
- 9. Let $v \in N(r) \setminus N^*(f^*)$.
- 11. Since v isn't served by f^* in optimal $\implies v$ is served by a facility $\hat{f}^*\in F^*,$ i.e., $\phi^*(v)=\hat{f}^*.$
- 12. Either $\hat{f}^* \in F$ or $\hat{f}^* \notin F$.
- 13. If $\hat{f}^* \in F$: then we assign v to \hat{f}^* .
- 14. If $\hat{f}^* \notin F$, consider $\hat{r} = \eta(\hat{f}^*)$, i.e. nearest neighbor of \hat{f}^* in F . (Note: $\hat{r} \neq r$. If it is, than $r \in F_1 \cup F_{\geq 2}$, we wouldn't have assigned f^* to r.) Assign v to \hat{r} .

Proof of Main Claim (contd.)

By triangle inequality: $d(v, \hat{r}) \leq d(v, \hat{f}^*) + d(\hat{f}^*, \hat{r}).$

-Subtracting $d(v, r)$ from both the sides, we get

$$
d(v,\hat{r}) - d(v,r) \leq d(v,\hat{f}^*) + d(\hat{f}^*,\hat{r}) - d(v,r).
$$

- We know that $d(\hat{f^*}, \hat{r}) \leq d(\hat{f^*}, r)$ because of nearest neighbor function $\eta.$
- Thus, $d(v, \hat{r}) d(v, r) \leq d(v, \hat{f}^*) + d(\hat{f}^*, r) d(v, r)$.
- By triangle inequality, $d(\hat{f}^*, r) d(v, r) \leq d(v, \hat{f}^*)$.
- Thus, $d(v, \hat{r}) d(v,r) \leq d(v, \hat{f}^*) + d(\hat{f}^*, r) d(v,r) \leq 2d(v, \hat{f}^*) = 2O_v$. \Box

Running Time

```
Input: A metric graph G = (V, E) and an integer \lt 0 \lt k \leq |V|Output: F \subset V such that |F| = k.
     Step 1 (Initialize) F \leftarrow \emptyset. Select any k vertices from V and insert them in F.
     Setp 2 (Local improvement step) While there exists a pair of vertices (u, v), where
              u \in V \setminus F and v \in F, such that cost(F \setminus \{v\} \cup \{u\}) < cost(F), set
              F \leftarrow F \setminus \{v\} \cup \{u\}.Step 3 Report F.
```
Running Time:

- 1. In each execution of Step 2, the cost improves \implies Algorithm terminates.
- 2. How many times Step 2 is executed?
- 3. Assume all $d(u,v)$ values are positive integers and let $\Delta = \sum d(u,v)$. u, v
- 4. Number of times Step 2 is executed $\leq \Delta$.
- 5. Modify Step 2: Swap if cost improves by at least a factor of $(1-\frac{\epsilon}{poly(n)})$

Theorem

Let F^* be an optimal set of k -facilities for the k -median problem on the metric graph G . The set F returned by the local search algorithm satisfies $cost(F) \le (5 + \epsilon)cost(F^*)$. Moreover, the algorithm runs in polynomial time. Run time depends on $|V|$ and $\frac{1}{\epsilon}$.

Improvements: In place of performing a single swap in Step 2, perform $t \geq 1$ multi-swaps. A refined analysis shows that $cost(F) \leq (3 + \frac{2}{t})cost(F^*)$.

[Approximating Geometric Hitting Set](#page-35-0)

Geometric Hitting Set Problem

Input: A set D of disks and a set P of points in plane.

Output: Find a subset $S \subseteq P$ of smallest cardinality that hits all disks in D.

We say a point $p \in P$ *hits* the disk $D \in \mathcal{D}$ if $p \in D$.

 k -level Local Search algorithm for finding a hitting set for disks:

Input: A set D of disks and a set P of points in plane. A (large) integer $k > 0$. **Output:** A subset $S \subseteq P$ that hits all disks in D .

- 1. Initialization: $S \leftarrow P$. Check if S hits all disks. If not, report infeasibility and stop.
- 2. Local Improvement Step: Keep replacing any set of k points in S by at most $k - 1$ points of P so that points in S hits all disks in \mathcal{D} .
- 3. Return S.

Main Result

Let $S^* \subseteq P$ be an optimal hitting set for D . The set S returned by the algorithm satisfies $|S| \leq (1 + \frac{c}{\sqrt{k}})|S^*|$, for some constant $c.$

Ingredients: Separators + Planar (Delaunay) Triangulations

A bipartite graph for $B, R \subseteq P$

Let $B, R \subset P$ be subset of points of P, and let $G = (V = B \cup R, E)$ be a bipartite graph such that the following *locality condition* holds: For any disk $D \in \mathcal{D}$, where $B \cap D \neq \emptyset$ and $R \cap D \neq \emptyset$, there exist points $b \in B \cap D$ and $r \in R \cap D$ such that $(b, r) \in E$.

Delaunay Triangulation on B ∪ R

Let G be the planar graph corresponding to the Delaunay triangulation of $B \cup R$, where we only keep the edges between a pair of red and blue points. The graph G satisfies the locality condition.

Proof: By construction, G is bipartite.

If a disk $D \in \mathcal{D}$ contains points from both B and R, than there is a point $b \in B$ and $r \in R$ such that the Delaunay edge br completely lies inside D. This uses the property that for a Delaunay triangulation, points within an arbitrary disk forms a connected subgraph. \Box

Illustration of Delaunay Graph $G = (B \cup R, E)$

Neighborhoods

For each vertex $v \in G = (V, E)$, let $N(v)$ be all the vertices adjacent to v. For a subset of vertices $W\subset V,$ define $N(W)=\bigcup_{\sim}N(v).$ $v \in W$

Let $B=S$ be the set returned by the local search algorithm, and let $R=S^{\ast}$ be an optimal solution for the hitting set problem. Assume that $B \cap R = \emptyset$ (otherwise, we can remove the common points and the disks that they hit).

Note that B hits all disks in D and similarly R hits all disks in D . Consider the planar bipartite graph $G = (B \cup R, E)$ formed using the Delaunay triangulation of $B \cup R$ and retain only the red-blue edges.

Claim 1

For any subset $B' \subset B$, $B \cup N(B') \setminus B'$ is a hitting set for D .

Proof:

- Consider any disk $D \in \mathcal{D}$.
- Since points in B hits all disks, there is some point in B that hits D .
- If any of the points in $B \setminus B'$ hits $D \implies$ Points in $B \cup N(B') \setminus B'$ also hits D .
- Now, assume only the points in B' hits the disk D .
- Points in R also hits all disks in $\mathcal D$
- Let $r \in R$ hits D and let $b \in B'$ hits D.
- Both points $b, r \in D$.

- By the Delaunay property, there is a bichromatic edge in the Delaunay triangulation that completely lies in D.

 \implies The neighborhhod set of B' also includes a red point in R that is in the disk D.

- Thus, $B \cup N(B') \setminus B'$ is a hitting set for D . $□$

Claim 2 - Expansion Property

For every subset $B' \subseteq B$ of size $\leq k$ in the graph $G = (B \cup R, E)$, $|N(B')|\geq |B'|$, i.e. the size of the neighborhood of B' is at least $|B'|$.

Proof:

- The set B is obtained by executing the local search algorithm with parameter k

 \implies there doesn't exist any improving swaps, i.e. no set of k points (vertices) in B can be replaced by $k - 1$ points from P to hit all the disks in D.

- By Claim 1, the set $B \cup N(B') \setminus B'$ is a hitting set for D .

 $\implies |N(B')| \ge |B'|$, otherwise the local optimality condition is violated. \Box

Let $G = (V, E)$ be a planar graph on n vertices, and let r be a number. - Fredrickson, using the recursive application of Lipton and Tarjan's planar separator theorem, shows a division of planar graph in regions consisting of interior and boundary vertices.

- Each interior vertex is contained within a region and is adjacent to vertices within that region.

- Boundary vertices are shared between at least two regions.

Lemma

Let *G* be a planar graph on *n* vertices. A *r*-division divides *G* in $\Theta(n/r)$ *regions, where each region consists of* $O(r)$ *vertices and* $O(\sqrt{r})$ *boundary vertices. A* r*-division of a planar graph* G *can be computed in* O(n log n) *time.*

Illustration of r**-partitioning**

Main Claim

Let $S \subset P$ be the set of points returned by local search algorithm with parameter k and let $S^*\subset P$ be an optimal solution for the hitting set problem for the disks in D by points in P . We define the Delaunay triangulation on red-blue points where $B=S$ and $R=S^\ast,$ and construct the bipartite graph $G = (B \cup R, E)$ by retaining only the edges between red and blue points. The following holds: $|B| \leq (1 + \frac{c}{\sqrt{k}})|R|$ for some constant $c.$

Proof:

- Assume $n = |B| + |R|$.
- We apply Fredrickson's r-partitioning on the graph G, where $r = k$.

- G is divided into $\Theta(n/k)$ regions, each region consisting of $\leq k$ vertices and $O(\sqrt{k})$ boundary vertices.

- $O(\sqrt{\kappa})$ boundary vertices.
- The total number of boundary vertices is $O(n/\sqrt{k})$
- Let $V_i = B_i \cup R_i$ be the set of vertices in the *i*-th region in the partitioning.
- Let B_i^{int} , B_i^{∂} be the interior and boundary blue vertices in V_i
- Let $R_i^{int},$ R_i^{∂} be the interior and boundary red vertices in V_i

- Sum total of boundary vertices among all regions is $\gamma n/\sqrt{k}$, where γ is a constant from Fredrickson's r-partitioning. .

- I.e., $\sum (|B_i^{\partial}| + |R_i^{\partial}|) \le \gamma n/\sqrt{k}$. i

- Number of interior blue vertices, $|B_i^{int}|$, in any region is at most $k.$
- By Claim 2 (Expansion Property), we know that $|B_i^{int}| \leq |N(B_i^{int})|$.
- What are the vertices in $N(B_i^{int})$?
- $\sim N(B^{int}_i) \subseteq R^{int}_i \cup R^{\partial}_i$ Thus we have $|B^{int}_i| \leq |R^{int}_i| + |R^{\partial}_i|$
- Add $|B_i^\partial|$ on both sides and we obtain: $|B_i^\partial|+|B_i^{int}|\leq |R_i^{int}|+|R_i^\partial|+|B_i^\partial|$
- Summing over all regions we have:

$$
\sum_{i} \left(|B_i^{\partial}| + |B_i^{int}| \right) \le \sum_{i} |R_i^{int}| + \sum_{i} \left(|R_i^{\partial}| + |B_i^{\partial}| \right) \tag{2}
$$

- Note, $\sum_i \left(|B_i^\partial| + |B_i^{int}| \right) \geq |B|,$ $|R| \geq \sum_i |R_i^{int}|,$ and $\sum_i (|B_i^{\delta}| + |B_i^{\delta}|) = \gamma n/\sqrt{k} = \gamma(|B| + |R|)/\sqrt{k}.$

We have

$$
|B| \le \sum_{i} \left(|B_i^{\partial}| + |B_i^{int}| \right) \le |R| + \gamma (|B| + |R|) / \sqrt{k} \tag{3}
$$

Let $k \geq 4\gamma^2$ and $c = 4\gamma$. Note $\gamma/\sqrt{k} \leq 1/2$.

$$
|B| \leq \left(\frac{1+\gamma/\sqrt{k}}{1-\gamma/\sqrt{k}}\right)|R|
$$

\n
$$
= (1+\gamma/\sqrt{k})(1+\gamma/\sqrt{k}+(\gamma/\sqrt{k})^2+(\gamma/\sqrt{k})^3+\cdots)|R|
$$

\n
$$
\left(\frac{1}{1-x}=1+x+x^2+\cdots\right)
$$

\n
$$
\leq (1+\gamma/\sqrt{k})(1+2\gamma/\sqrt{k})|R| \quad \text{(as } \gamma/\sqrt{k} \leq 1/2)
$$

\n
$$
= (1+3\gamma/\sqrt{k}+2(\gamma/\sqrt{k})^2)|R|
$$

\n
$$
= (1+4\gamma/\sqrt{k})|R| \quad \text{(as } \gamma/\sqrt{k} \leq 1/2)
$$

\n
$$
= (1+c/\sqrt{k})|R| \qquad \Box
$$

Summary

- Design a local search algorithm with parameter k .
- Consider the solution B returned by the algorithm and an optimal solution R.
- Set up a bipartite planar graph G with bipartition B and R .
- Find a k-partitioning of G into $\Theta(n/k)$ regions, each region consisting of at most k vertices, and the boundary composed of $O(\sqrt{k})$ vertices.
- Bound the size of B in terms of the size of R using the neighborhood relationships of internal blue vertices in each region.

Extensions: Maximization problems (see Aschner et al.), Max Coverage Problems with Cardinality Constraints (see Chaplick et al.), . . .

[References](#page-50-0)

References

- 1. Arya et al., Local search heuristics for k-median and facility location problems, SIAM Jl. Computing 33(3): 544-562, 2004.
- 2. A. Gupta and K. Tangwongsam, Simpler Analyses of Local Search Algorithms for Facility Location, <http://arxiv.org/abs/0809.2554>, 2008.
- 3. N.H. Mustafa and S. Ray, Improved results on geometric hitting set problems, Discrete and Computational Geometry 44:883-895, 2010.
- 4. R. Ravi, Lectures at MSR India Winter School , 2012.
- 5. A. Gupta, Lectures on Approximation Algorithms, 2005.
- 6. R. Aschner, M.J. Katz, G. Morgenstern and Y. Yuditsky, Approximation schemes for covering and packing, WALCOM, Lecture Notes in Computer Science 7748: 89-100, Springer, 2013.
- 7. S. Chaplick, M. De, A. Ravsky, and J. Spoerhase, Approximation Schemes for Geometric Coverage Problems, ESA, LIPIcs: 112: 17:1–17:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.