Twin-width

Yan Garito

Carleton University yangarito@cmail.carleton.ca

Context

Problem: Many problems are NP-hard on general graphs:

Context

k-Independent graph;

Context

- k-Independent graph;
- k-Dominating Set;

Context

- k-Independent graph;
- k-Dominating Set;
- k-Coloring;

Context

Problem: Many problems are NP-hard on general graphs:

- k-Independent graph;
- k-Dominating Set;
- k-Coloring;
- The list goes on...

Solution: FPT algorithms

Context

- k-Independent graph;
- k-Dominating Set;
- k-Coloring;
- The list goes on...

Solution: FPT algorithms...but what parameter do we fix?

 Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)
- Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)
- Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)
 - Useful even on dense graphs

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)
- Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)
 - Useful even on dense graphs
 - Unknown whether we can recognize graphs with clique-width k for constant k

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)
- Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)
 - Useful even on dense graphs
 - Unknown whether we can recognize graphs with clique-width k for constant k
- Twin-width (Bonnet, Kim, et al. 2021)

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)
- Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)
 - Useful even on dense graphs
 - Unknown whether we can recognize graphs with clique-width k for constant k
- Twin-width (Bonnet, Kim, et al. 2021)
 - Useful even on dense graphs

- Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson and Seymour 1984)
 - Linked with tree decompositions
 - Only useful for sparse graphs
 - Constant k: can recognize graphs with treewidth k in polynomial time (Arnborg, Corneil, and Proskurowski 1987)
- Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)
 - Useful even on dense graphs
 - Unknown whether we can recognize graphs with clique-width k for constant k
- Twin-width (Bonnet, Kim, et al. 2021)
 - Useful even on dense graphs
 - Can mostly be computed (NP-hard still) : SAT solvers (Bergé, Bonnet, and Déprés 2022; Schidler and Szeider 2022)

```
What is twin-width?
```

Definition (Trigraph) Triple G = (V, E, R):

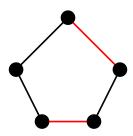
- V vertex set;
- $\blacktriangleright E \subseteq V \times V \text{ black edge set}$
- $\blacktriangleright \ R \subseteq V \times V \text{ red edge set}$
- $\blacktriangleright E \cap R = \emptyset$

Definition (Trigraph)

Triple G = (V, E, R):

- V vertex set;
- $\blacktriangleright E \subseteq V \times V \text{ black edge set}$
- $\blacktriangleright R \subseteq V \times V \text{ red edge set}$

 $\blacktriangleright E \cap R = \emptyset$

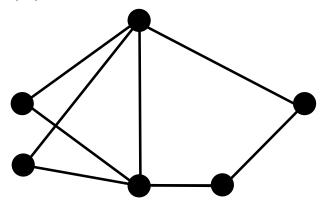


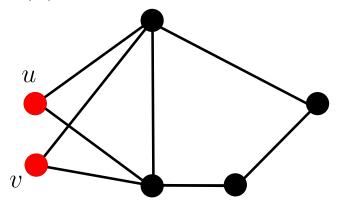
Carleton University yangarito@cmail.carleton.ca

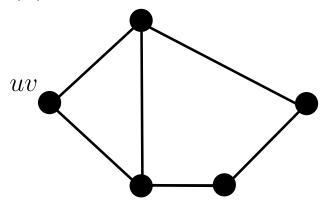
Definition (Contraction sequence)

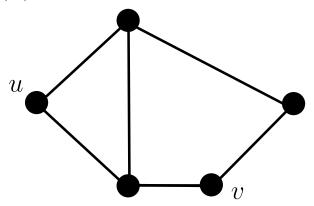
G (tri)graph on *n* vertices. Contraction sequence $G = G_n, G_{n-1}, ..., G_2, G_1 = K_1$ if for all $i \in \{1, 2, ..., n-1\}, G_{n-i}$ is obtained from G_{n-i+1} by merging two vertices *u* and *v* into a vertex *uv* as follows:

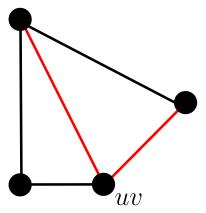
- If u and v both have a black edge with w, then uv has a black edge with w
- If neither u nor v have an edge with w, then uv has no edge with w
- Otherwise, uv has a red edge with w

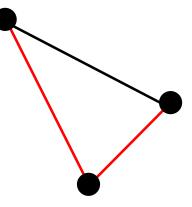












uw and *vw* black \Rightarrow (*uv*)*w* black *uw* and *vw* missing \Rightarrow (*uv*)*w* missing otherwise (*uv*)*w* red

Definition (Twin-width)

Let G = (V, E). Denote by $\Delta_r(H)$ the maximum red degree of a trigraph H.

$$\mathsf{tww}(G) = \min_{G_n, \dots, G_1 \text{ contraction sequence of } G} \{ \max_{i=1, \dots, n} \{ \Delta_r(G_i) \} \}$$

Definition (Twin-width)

Let G = (V, E). Denote by $\Delta_r(H)$ the maximum red degree of a trigraph H.

$$\mathsf{tww}(G) = \min_{G_n, \dots, G_1 \text{ contraction sequence of } G} \{ \max_{i=1, \dots, n} \{ \Delta_r(G_i) \} \}$$

Definition (u(G))

If $u \in G_i$, a trigraph in a contraction sequence, then u(G) = the set of vertices of G that were contracted to form u

k-Independent Set

```
k-Independent Set
```

Definition (Independent Set)

An independent set I in a graph G = (V, E) is a set such that $I \subseteq V$ and for any $u, v \in I, uv \notin E$. We denote by $\alpha(G)$ the size of the largest independent set of G

k-Independent Set

Definition (Independent Set)

An independent set I in a graph G = (V, E) is a set such that $I \subseteq V$ and for any $u, v \in I, uv \notin E$. We denote by $\alpha(G)$ the size of the largest independent set of G

Problem (k-Independent Set)

Input: a graph G = (V, E), an integer $k \ge 1$ **Output:** yes if there exists an independent set $I \subseteq V$ with $|I| \ge k$ and no otherwise

```
k-Independent Set
```

Problem (*k*-Independent Set)

Input: a graph G = (V, E), an integer $k \ge 1$ **Output:** yes if there exists an independent set $I \subseteq V$ with $|I| \ge k$ and no otherwise

How does twin-width help?

k-Independent Set

Idea: Use the contraction sequence to progressively build up partial solutions (Bonnet, Geniet, et al. 2021)

k-Independent Set

Idea: Use the contraction sequence to progressively build up partial solutions (Bonnet, Geniet, et al. 2021)

Definition (Partial solution)

A partial solution in the trigraph G_i is a pair (T, S):

- T ⊆ V(G_i) is a connected subset of vertices in the red graph of G_i
- ▶ $S \subseteq V(G)$ is an independent set of G such that $S \subseteq \cup_{u \in T} u(G)$ and for every $u \in T, S \cap u(G) \neq \emptyset$

Idea: Use the contraction sequence to progressively build up partial solutions (Bonnet, Geniet, et al. 2021)

Definition (Partial solution)

A partial solution in the trigraph G_i is a pair (T, S):

- $T \subseteq V(G_i)$ is a connected subset of vertices in the red graph of G_i
- ► $S \subseteq V(G)$ is an independent set of G such that $S \subseteq \bigcup_{u \in T} u(G)$ and for every $u \in T, S \cap u(G) \neq \emptyset$

Definition (Compatible partial solutions)

(T, S) and (T', S') are compatible if there is no edge (no matter the color) uu' in G_i such that $u \in T$ and $u' \in T'$

Idea: Use the contraction sequence to progressively build up partial solutions (Bonnet, Geniet, et al. 2021)

Definition (Compatible partial solutions)

(T, S) and (T', S') are compatible if there is no edge (no matter the color) uu' in G_i such that $u \in T$ and $u' \in T'$

Definition (Union of compatible partial solutions) $(T, S) \cup (T', S') = (T \cup T', S \cup S')$

Remark

The union of two compatible partial solutions is not a partial solution

```
k-Independent Set
```

Definition (Realizable set)

A set $T \subseteq V(G_i)$ is realizable (in G_i) if there exists a set $S \subseteq V(G)$ such that (T, S) is a partial solution in G_i

Definition (Realizable set)

A set $T \subseteq V(G_i)$ is realizable (in G_i) if there exists a set $S \subseteq V(G)$ such that (T, S) is a partial solution in G_i

Definition (dec)

Let $X \subseteq V(G_i)$. The set dec(X) is the set with one partial solution in G_i for each connected component of X in its red graph. If one connected component is not realizable, then dec(X) = None. $\cup dec(X) = None$ if two of the partial solutions in X are not compatible or if dec(X) = None

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

▶ Initialize the partial solutions $S_n = \{(\{v\}, \{v\}), v \in V(G)\}$

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

- ▶ Initialize the partial solutions $S_n = \{(\{v\}, \{v\}), v \in V(G)\}$
- Let u, v ∈ G_{i+1} be contracted to z ∈ G_i. Initialize S_i as all the solutions in S_{i+1} not intersecting {u, v}

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

- ▶ Initialize the partial solutions $S_n = \{(\{v\}, \{v\}), v \in V(G)\}$
- Let u, v ∈ G_{i+1} be contracted to z ∈ G_i. Initialize S_i as all the solutions in S_{i+1} not intersecting {u, v}
- Consider all realizable sets $T \ni z$ in G_i

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

- ▶ Initialize the partial solutions $S_n = \{(\{v\}, \{v\}), v \in V(G)\}$
- Let u, v ∈ G_{i+1} be contracted to z ∈ G_i. Initialize S_i as all the solutions in S_{i+1} not intersecting {u, v}
- Consider all realizable sets $T \ni z$ in G_i
 - For each such *T*, add the partial solution with largest *S* from among $\cup \det(T \setminus \{z\} \cup \{u, v\}), \cup \det(T \setminus \{z\} \cup \{u\})$ and $\det(T \setminus \{z\} \cup \{v\})$ to the set of partial solutions S_i

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

▶ Initialize the partial solutions $S_n = \{(\{v\}, \{v\}), v \in V(G)\}$

- Let u, v ∈ G_{i+1} be contracted to z ∈ G_i. Initialize S_i as all the solutions in S_{i+1} not intersecting {u, v}
- Consider all realizable sets $T \ni z$ in G_i
 - For each such *T*, add the partial solution with largest *S* from among $\cup \det(T \setminus \{z\} \cup \{u, v\}), \cup \det(T \setminus \{z\} \cup \{u\})$ and $\det(T \setminus \{z\} \cup \{v\})$ to the set of partial solutions S_i
 - ▶ Before adding a partial solution to S_i, we check if its S has size ≥ k. If so, we return yes

Algorithm: Input: G = (V, E) a graph, $k \ge 1$ an integer and a contraction sequence $(G_n, ..., G_1)$ of G

▶ Initialize the partial solutions $S_n = \{(\{v\}, \{v\}), v \in V(G)\}$

- Let u, v ∈ G_{i+1} be contracted to z ∈ G_i. Initialize S_i as all the solutions in S_{i+1} not intersecting {u, v}
- Consider all realizable sets $T \ni z$ in G_i
 - For each such *T*, add the partial solution with largest *S* from among ∪ dec(*T*\{*z*} ∪ {*u*, *v*}), ∪ dec(*T*\{*z*} ∪ {*u*}) and dec(*T*\{*z*} ∪ {*v*}) to the set of partial solutions *S_i*
 - ▶ Before adding a partial solution to S_i, we check if its S has size ≥ k. If so, we return yes
- If we build S_1 and still have not found a solution whose S has size $\geq k$, we return no

Theorem

This algorithm is correct

Theorem

This algorithm is correct

By induction, we show that for every realizable set T ⊆ V(G_i), we have (T, S) ∈ S_i such that either |S| = α(G[∪_{u∈T}u(G)]) or |S| ≥ k. We will always assume the former, as the algorithm terminates in the latter case

Theorem

This algorithm is correct

IH: for every realizable set T ⊆ V(G_i), we have (T, S) ∈ S_i with |S| = α(G[∪_{u∈T}u(G)])

• Let u, v be contracted into z from G_{i+1} to G_i

Theorem

This algorithm is correct

- IH: for every realizable set T ⊆ V(G_i), we have (T, S) ∈ S_i with |S| = α(G[∪_{u∈T}u(G)])
- Let u, v be contracted into z from G_{i+1} to G_i
- Let T be realizable in G_i . There are two cases:

Theorem

This algorithm is correct

- IH: for every realizable set T ⊆ V(G_i), we have (T, S) ∈ S_i with |S| = α(G[∪_{u∈T}u(G)])
- Let u, v be contracted into z from G_{i+1} to G_i
- Let T be realizable in G_i . There are two cases:
 - z ∉ T: Then we inherit S from S_{i+1} and by the induction hypothesis, it satisfies |S| = α(G[∪_{u∈T}u(G)])

Theorem

This algorithm is correct

- IH: for every realizable set T ⊆ V(G_i), we have (T, S) ∈ S_i with |S| = α(G[∪_{u∈T}u(G)])
- Let u, v be contracted into z from G_{i+1} to G_i
- Let T be realizable in G_i . There are two cases: $z \in T$:
 - Let S' be a maximum independent set of $G[\cup_{u \in T} u(G)]$.

Theorem

This algorithm is correct

- ► IH: for every realizable set $T \subseteq V(G_i)$, we have $(T, S) \in S_i$ with $|S| = \alpha(G[\cup_{u \in T} u(G)])$
- Let u, v be contracted into z from G_{i+1} to G_i
- Let T be realizable in G_i . There are two cases:
 - \blacktriangleright $z \in T$:
 - Let S' be a maximum independent set of $G[\cup_{u \in T} u(G)]$.
 - ▶ Build $\varnothing \neq I \subseteq \{u, v\}$ by adding u (resp. v) to I if $S' \cap u(G) \neq \varnothing$ (resp. $S' \cap v(G) \neq \varnothing$)

Theorem

This algorithm is correct

- ▶ IH: for every realizable set $T \subseteq V(G_i)$, we have $(T, S) \in S_i$ with $|S| = \alpha(G[\cup_{u \in T} u(G)])$
- Let u, v be contracted into z from G_{i+1} to G_i
- Let T be realizable in G_i . There are two cases:
 - ► *z* ∈ *T*:
 - Let S' be a maximum independent set of $G[\cup_{u \in T} u(G)]$.
 - ▶ Build $\emptyset \neq I \subseteq \{u, v\}$ by adding u (resp. v) to I if $S' \cap u(G) \neq \emptyset$ (resp. $S' \cap v(G) \neq \emptyset$)
 - By the existence of S', the connected components of T\{z} ∪ I are all realizable

Theorem

This algorithm is correct

- ► IH: for every realizable set $T \subseteq V(G_i)$, we have $(T, S) \in S_i$ with $|S| = \alpha(G[\cup_{u \in T} u(G)])$
- Let u, v be contracted into z from G_{i+1} to G_i
- Let T be realizable in G_i . There are two cases:
 - ► *z* ∈ *T*:
 - Let S' be a maximum independent set of $G[\cup_{u \in T} u(G)]$.
 - ▶ Build $\varnothing \neq I \subseteq \{u, v\}$ by adding u (resp. v) to I if $S' \cap u(G) \neq \varnothing$ (resp. $S' \cap v(G) \neq \varnothing$)
 - By the existence of S', the connected components of T \{z} ∪ I are all realizable
 - By the induction hypothesis, dec(T\{z} ∪ I) contains optimal partial solutions, so its union is optimal

Theorem

This algorithm runs in time $O(k^2 d^{2k}n)$ where d is the maximum red degree of a graph in the contraction sequence

Theorem

This algorithm runs in time $O(k^2 d^{2k} n)$ where d is the maximum red degree of a graph in the contraction sequence

- Enumerating the T's takes time O(d^{2k})
- Checking compatibility of partial solutions takes time $O(k^2)$

Carleton University yangarito@cmail.carleton.ca

```
k-Dominating Set
```

Definition (Dominating Set)

A dominating set D in a graph G = (V, E) is a set such that $D \subseteq V$ and for any $u \in V$, either $u \in D$ or there is $v \in D$ such that $uv \in E$

Definition (Dominating Set)

A dominating set D in a graph G = (V, E) is a set such that $D \subseteq V$ and for any $u \in V$, either $u \in D$ or there is $v \in D$ such that $uv \in E$

Problem (k-Dominating Set)

Input: a graph G = (V, E), an integer $k \ge 1$ **Output:** yes if there exists a dominating set $D \subseteq V$ with $|D| \le k$ and no otherwise

(Bonnet, Geniet, et al. 2021)

Definition (Profile of a partial solution)

A profile of a partial solution in G_i is a triple (T, D, M) of subsets of $V(G_i)$:

- T forms a connected subset in the red graph of G_i
- ► $D, M \subseteq T$
- ▶ $\bigcup_{x \in D} B_i^2(x) \subseteq T$ where $B_i^2(x)$ is the ball of radius 2 centered at x in the red graph of G_i

A profile such that $|D| \leq k$ is called a k-profile

Definition (Realizable profile)

(T, D, M) is realizable with $S \subseteq V(G)$ if:

- 1. $S \subseteq \bigcup_{x \in T} x(G)$
- 2. for all $x \in V(G_i)$, $x \in D$ iff $x(G) \cap S \neq \emptyset$
- 3. for all $x \in V(G_i)$, $x \in M$ iff x(G) is dominated by S

Assume that u, v are contracted to z to form G_i from G_{i+1}

Definition (Consistency of profiles)

A profile (T, D, M) such that $z \in T$ is consistent with a set $\{(T_1, D_1, M_1), ..., (T_\ell, D_\ell, M_\ell)\}$ if the following holds. Let $T' = T \setminus \{z\} \cup \{u, v\}, D' = \cup_{j=1}^{\ell} D_j$ and $M' = \cup_{j=1}^{\ell} M_j$.

1. $T_1, ..., T_\ell$ are the red components of T' in G_{i+1}

2.
$$D \setminus \{z\} = D' \setminus \{u, v\}$$

3.
$$z \in D$$
 iff $u \in D'$ or $v \in D'$

- 4. For every $x \in T \setminus \{z\}$, $x \in M$ iff $x \in M'$ or there is $y \in D'$ such that xy is a black edge in G_{i+1}
- 5. $z \in M$ iff for each $x \in \{u, v\}$, either $x \in M'$ or there is $y \in D'$ such that xy is a black edge in G_{i+1}

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

Initialize a map τ_n that takes as input profiles (T, D, M) with |T| < (d² + 1)k and outputs either None if the profile is not realizable, or outputs a set S ⊆_{x∈T} x(G) that realizes (T, D, M). Initially, τ_n({v}, {v}, {v}) = {v}, τ_n({v}, Ø, Ø) = Ø and None on every other input.

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

• Let u, v be the vertices contracted in $G_{i+1} \rightarrow G_i$ into z

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

- Let u, v be the vertices contracted in $G_{i+1} \rightarrow G_i$ into z
- Let (T, D, M) be a profile. There are two cases:

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

Let u, v be the vertices contracted in G_{i+1} → G_i into z
Let (T, D, M) be a profile. There are two cases:
z ∉ T: then τ_i(T, D, M) = τ_{i+1}(T, D, M)

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

- Let u, v be the vertices contracted in $G_{i+1} \rightarrow G_i$ into z
- Let (T, D, M) be a profile. There are two cases:
 - ► $z \in T$: inspect every set \mathcal{P} of *k*-profiles consistent with (T, D, M)

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

- Let u, v be the vertices contracted in $G_{i+1} \rightarrow G_i$ into z
- Let (T, D, M) be a profile. There are two cases:
 - ► $z \in T$: inspect every set \mathcal{P} of *k*-profiles consistent with (T, D, M)
 - ▶ Put $\tau_i(T, D, M)$ = the best $\cup_{P \in \mathcal{P}} \tau_{i+1}(P)$ (the smallest one). If all these unions are None, $\tau_i(T, D, M)$ = None

Algorithm: Input: a graph G = (V, E), an integer $k \ge 1$ and a contraction sequence $(G_n, ..., G_1)$ of G with maximum red degree d

• Let u, v be the vertices contracted in $G_{i+1} \rightarrow G_i$ into z

Let (T, D, M) be a profile. There are two cases:

- ▶ $z \in T$: inspect every set \mathcal{P} of *k*-profiles consistent with (T, D, M)
- ▶ Put $\tau_i(T, D, M)$ = the best $\cup_{P \in \mathcal{P}} \tau_{i+1}(P)$ (the smallest one). If all these unions are None, $\tau_i(T, D, M)$ = None
- ▶ If there is a \mathcal{P} with a profile (T, D, M) with $|T| \ge (d^2 + 1)k$, since τ_{i+1} is undefined on this profile, we instead pick $v \in T \setminus (\bigcup_{x \in D} B_{i+1}^2(x))$ and make the query at $(T \setminus \{v\}, D \setminus \{v\}, M \setminus \{v\})$

Theorem

This algorithm is correct

Theorem

This algorithm is correct

Theorem

This algorithm runs in time $O(d^{2(d^2+1)k-2}2^{2(d^2+1)k})$ where d is the maximum red degree of the trigraphs in the contraction sequence

Conclusion

Thank you for listening!

Bibliography I

Arnborg, Stefan, Derek G. Corneil, and Andrzej Proskurowski (1987). "Complexity of Finding Embeddings in a k-Tree." In: SIAM Journal on Algebraic Discrete Methods 8.2, pp. 277–284. DOI: 10.1137/0608024. eprint: https://doi.org/10.1137/0608024. URL: https://doi.org/10.1137/0608024.

Bibliography II

Bergé, Pierre, Édouard Bonnet, and Hugues Déprés (2022). "Deciding Twin-Width at Most 4 Is NP-Complete." In: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Ed. by Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, Vol. 229. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 18:1-18:20. ISBN: 978-3-95977-235-8. DOI: 10.4230/LIPIcs.ICALP.2022.18. URL: https://drops.dagstuhl.de/entities/document/10. 4230/LIPIcs.ICALP.2022.18.

Bertele, Umberto and Francesco Brioschi (1972). Nonserial Dynamic Programming. USA: Academic Press, Inc. ISBN: 0120934507.

Bibliography III

 Bonnet, Édouard, Colin Geniet, et al. (2021). Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. arXiv: 2007.14161 [cs.DS]. URL: https://arxiv.org/abs/2007.14161.
 Bonnet, Édouard, Eun Jung Kim, et al. (Nov. 2021). "Twin-width I: Tractable FO Model Checking." In: J. ACM 69.1. ISSN: 0004-5411. DOI: 10.1145/3486655. URL: https://doi.org/10.1145/3486655.

Bibliography IV

Courcelle, Bruno, Joost Engelfriet, and Grzegorz Rozenberg (1993). "Handle-rewriting hypergraph grammars." In: Journal of Computer and System Sciences 46.2, pp. 218–270. ISSN: 0022-0000. DOI:

https://doi.org/10.1016/0022-0000(93)90004-G. URL: https://www.sciencedirect.com/science/article/pii/ 002200009390004G.

Halin, Rudolf (1976). "S-functions for graphs." In: *Journal of Geometry* 8, pp. 171–186. URL:

https://api.semanticscholar.org/CorpusID:120256194.

Bibliography V

Robertson, Neil and P.D Seymour (1984). "Graph minors. III. Planar tree-width." In: Journal of Combinatorial Theory, Series B 36.1, pp. 49-64. ISSN: 0095-8956. DOI: https://doi.org/10.1016/0095-8956(84)90013-3. URL: https://www.sciencedirect.com/science/article/pii/ 0095895684900133.

Schidler, André and Stefan Szeider (2022). "A SAT Approach to Twin-Width." In: 2022 Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX), pp. 67–77. DOI: 10.1137/1.9781611977042.6. eprint: https: //epubs.siam.org/doi/pdf/10.1137/1.9781611977042.6. URL: https:

//epubs.siam.org/doi/abs/10.1137/1.9781611977042.6.