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Context

Problem: Many problems are NP-hard on general graphs:
▶ k-Independent graph;
▶ k-Dominating Set;
▶ k-Coloring;
▶ The list goes on...

Solution: FPT algorithms...but what parameter do we fix?
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Some parameters to fix

▶ Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson
and Seymour 1984)
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Some parameters to fix
▶ Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson

and Seymour 1984)
▶ Linked with tree decompositions
▶ Only useful for sparse graphs
▶ Constant k : can recognize graphs with treewidth k in

polynomial time (Arnborg, Corneil, and Proskurowski 1987)
▶ Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)

▶ Useful even on dense graphs
▶ Unknown whether we can recognize graphs with clique-width k

for constant k
▶ Twin-width (Bonnet, Kim, et al. 2021)

▶ Useful even on dense graphs
▶ Can mostly be computed (NP-hard still) : SAT solvers (Bergé,

Bonnet, and Déprés 2022; Schidler and Szeider 2022)
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What is twin-width?

Definition (Trigraph)
Triple G = (V ,E ,R):
▶ V vertex set;
▶ E ⊆ V × V black edge set
▶ R ⊆ V × V red edge set
▶ E ∩ R = ∅
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What is twin-width?

Definition (Contraction sequence)
G (tri)graph on n vertices. Contraction sequence
G = Gn,Gn−1, ...,G2,G1 = K1 if for all i ∈ {1, 2, ..., n − 1},Gn−i is
obtained from Gn−i+1 by merging two vertices u and v into a
vertex uv as follows:
▶ If u and v both have a black edge with w , then uv has a black

edge with w

▶ If neither u nor v have an edge with w , then uv has no edge
with w

▶ Otherwise, uv has a red edge with w
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What is twin-width?
uw and vw black ⇒ (uv)w black
uw and vw missing ⇒ (uv)w missing
otherwise (uv)w red
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What is twin-width?

Definition (Twin-width)
Let G = (V ,E ). Denote by ∆r(H) the maximum red degree of a
trigraph H.

tww(G ) = min
Gn,...,G1 contraction sequence of G

{ max
i=1,...,n

{∆r(Gi )}}
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What is twin-width?

Definition (Twin-width)
Let G = (V ,E ). Denote by ∆r(H) the maximum red degree of a
trigraph H.

tww(G ) = min
Gn,...,G1 contraction sequence of G

{ max
i=1,...,n

{∆r(Gi )}}

Definition (u(G ))
If u ∈ Gi , a trigraph in a contraction sequence, then u(G ) = the
set of vertices of G that were contracted to form u
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k-Independent Set

Definition (Independent Set)
An independent set I in a graph G = (V ,E ) is a set such that
I ⊆ V and for any u, v ∈ I , uv /∈ E . We denote by α(G ) the size of
the largest independent set of G
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Definition (Independent Set)
An independent set I in a graph G = (V ,E ) is a set such that
I ⊆ V and for any u, v ∈ I , uv /∈ E . We denote by α(G ) the size of
the largest independent set of G

Problem (k-Independent Set)

Input: a graph G = (V ,E ), an integer k ≥ 1
Output: yes if there exists an independent set I ⊆ V with |I | ≥ k
and no otherwise
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k-Independent Set

Problem (k-Independent Set)

Input: a graph G = (V ,E ), an integer k ≥ 1
Output: yes if there exists an independent set I ⊆ V with |I | ≥ k
and no otherwise

How does twin-width help?

Carleton University yangarito@cmail.carleton.ca



5/12

References

k-Independent Set

Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)
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Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)

Definition (Partial solution)
A partial solution in the trigraph Gi is a pair (T ,S):
▶ T ⊆ V (Gi ) is a connected subset of vertices in the red graph

of Gi

▶ S ⊆ V (G ) is an independent set of G such that
S ⊆ ∪u∈Tu(G ) and for every u ∈ T ,S ∩ u(G ) ̸= ∅
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▶ S ⊆ V (G ) is an independent set of G such that
S ⊆ ∪u∈Tu(G ) and for every u ∈ T ,S ∩ u(G ) ̸= ∅

Definition (Compatible partial solutions)
(T ,S) and (T ′, S ′) are compatible if there is no edge (no matter
the color) uu′ in Gi such that u ∈ T and u′ ∈ T ′
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k-Independent Set

Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)

Definition (Compatible partial solutions)
(T ,S) and (T ′, S ′) are compatible if there is no edge (no matter
the color) uu′ in Gi such that u ∈ T and u′ ∈ T ′

Definition (Union of compatible partial solutions)
(T ,S) ∪ (T ′, S ′) = (T ∪ T ′,S ∪ S ′)

Remark
The union of two compatible partial solutions is not a partial
solution
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k-Independent Set

Definition (Realizable set)
A set T ⊆ V (Gi ) is realizable (in Gi ) if there exists a set
S ⊆ V (G ) such that (T ,S) is a partial solution in Gi
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k-Independent Set

Definition (Realizable set)
A set T ⊆ V (Gi ) is realizable (in Gi ) if there exists a set
S ⊆ V (G ) such that (T ,S) is a partial solution in Gi

Definition (dec)
Let X ⊆ V (Gi ). The set dec(X ) is the set with one partial solution
in Gi for each connected component of X in its red graph. If one
connected component is not realizable, then dec(X ) = None.
∪ dec(X ) = None if two of the partial solutions in X are not
compatible or if dec(X ) = None
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Algorithm: Input: G = (V ,E ) a graph, k ≥ 1 an integer and a
contraction sequence (Gn, ...,G1) of G
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▶ Before adding a partial solution to Si , we check if its S has
size ≥ k . If so, we return yes
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Algorithm: Input: G = (V ,E ) a graph, k ≥ 1 an integer and a
contraction sequence (Gn, ...,G1) of G
▶ Initialize the partial solutions Sn = {({v}, {v}), v ∈ V (G )}
▶ Let u, v ∈ Gi+1 be contracted to z ∈ Gi . Initialize Si as all the

solutions in Si+1 not intersecting {u, v}
▶ Consider all realizable sets T ∋ z in Gi

▶ For each such T , add the partial solution with largest S from
among ∪ dec(T\{z} ∪ {u, v}),∪ dec(T\{z} ∪ {u}) and
dec(T\{z} ∪ {v}) to the set of partial solutions Si

▶ Before adding a partial solution to Si , we check if its S has
size ≥ k . If so, we return yes

▶ If we build S1 and still have not found a solution whose S has
size ≥ k , we return no
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Theorem
This algorithm is correct
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k-Independent Set

Theorem
This algorithm is correct

▶ By induction, we show that for every realizable set
T ⊆ V (Gi ), we have (T ,S) ∈ Si such that either
|S | = α(G [∪u∈Tu(G )]) or |S | ≥ k . We will always assume the
former, as the algorithm terminates in the latter case
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k-Independent Set

Theorem
This algorithm is correct

▶ IH: for every realizable set T ⊆ V (Gi ), we have (T , S) ∈ Si

with |S | = α(G [∪u∈Tu(G )])

▶ Let u, v be contracted into z from Gi+1 to Gi
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Theorem
This algorithm is correct

▶ IH: for every realizable set T ⊆ V (Gi ), we have (T , S) ∈ Si

with |S | = α(G [∪u∈Tu(G )])

▶ Let u, v be contracted into z from Gi+1 to Gi

▶ Let T be realizable in Gi . There are two cases:
▶ z /∈ T : Then we inherit S from Si+1 and by the induction

hypothesis, it satisfies |S | = α(G [∪u∈Tu(G )])
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This algorithm is correct
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with |S | = α(G [∪u∈Tu(G )])

▶ Let u, v be contracted into z from Gi+1 to Gi

▶ Let T be realizable in Gi . There are two cases:
▶ z ∈ T :

▶ Let S ′ be a maximum independent set of G [∪u∈Tu(G)].
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▶ Let T be realizable in Gi . There are two cases:
▶ z ∈ T :

▶ Let S ′ be a maximum independent set of G [∪u∈Tu(G)].
▶ Build ∅ ̸= I ⊆ {u, v} by adding u (resp. v) to I if

S ′ ∩ u(G) ̸= ∅ (resp. S ′ ∩ v(G) ̸= ∅)
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▶ Build ∅ ̸= I ⊆ {u, v} by adding u (resp. v) to I if

S ′ ∩ u(G) ̸= ∅ (resp. S ′ ∩ v(G) ̸= ∅)
▶ By the existence of S ′, the connected components of

T\{z} ∪ I are all realizable
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k-Independent Set
Theorem
This algorithm is correct

▶ IH: for every realizable set T ⊆ V (Gi ), we have (T , S) ∈ Si

with |S | = α(G [∪u∈Tu(G )])

▶ Let u, v be contracted into z from Gi+1 to Gi

▶ Let T be realizable in Gi . There are two cases:
▶ z ∈ T :

▶ Let S ′ be a maximum independent set of G [∪u∈Tu(G)].
▶ Build ∅ ̸= I ⊆ {u, v} by adding u (resp. v) to I if

S ′ ∩ u(G) ̸= ∅ (resp. S ′ ∩ v(G) ̸= ∅)
▶ By the existence of S ′, the connected components of

T\{z} ∪ I are all realizable
▶ By the induction hypothesis, dec(T\{z} ∪ I ) contains optimal

partial solutions, so its union is optimal
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k-Independent Set

Theorem
This algorithm runs in time O(k2d2kn) where d is the maximum
red degree of a graph in the contraction sequence
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k-Independent Set

Theorem
This algorithm runs in time O(k2d2kn) where d is the maximum
red degree of a graph in the contraction sequence

▶ Enumerating the T ’s takes time O(d2k)

▶ Checking compatibility of partial solutions takes time O(k2)
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k-Dominating Set
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k-Dominating Set

Definition (Dominating Set)
A dominating set D in a graph G = (V ,E ) is a set such that
D ⊆ V and for any u ∈ V , either u ∈ D or there is v ∈ D such
that uv ∈ E
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k-Dominating Set

Definition (Dominating Set)
A dominating set D in a graph G = (V ,E ) is a set such that
D ⊆ V and for any u ∈ V , either u ∈ D or there is v ∈ D such
that uv ∈ E

Problem (k-Dominating Set)

Input: a graph G = (V ,E ), an integer k ≥ 1
Output: yes if there exists a dominating set D ⊆ V with |D| ≤ k
and no otherwise
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k-Dominating Set

(Bonnet, Geniet, et al. 2021)

Definition (Profile of a partial solution)
A profile of a partial solution in Gi is a triple (T ,D,M) of subsets
of V (Gi ):
▶ T forms a connected subset in the red graph of Gi

▶ D,M ⊆ T

▶ ∪x∈DB
2
i (x) ⊆ T where B2

i (x) is the ball of radius 2 centered
at x in the red graph of Gi

A profile such that |D| ≤ k is called a k-profile
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k-Dominating Set

Definition (Realizable profile)
(T ,D,M) is realizable with S ⊆ V (G ) if:

1. S ⊆ ∪x∈T x(G )

2. for all x ∈ V (Gi ), x ∈ D iff x(G ) ∩ S ̸= ∅
3. for all x ∈ V (Gi ), x ∈ M iff x(G ) is dominated by S
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k-Dominating Set

Assume that u, v are contracted to z to form Gi from Gi+1
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k-Dominating Set

Definition (Consistency of profiles)
A profile (T ,D,M) such that z ∈ T is consistent with a set
{(T1,D1,M1), ..., (Tℓ,Dℓ,Mℓ)} if the following holds. Let
T ′ = T\{z} ∪ {u, v},D ′ = ∪ℓ

j=1Dj and M ′ = ∪ℓ
j=1Mj .

1. T1, ...,Tℓ are the red components of T ′ in Gi+1

2. D\{z} = D ′\{u, v}
3. z ∈ D iff u ∈ D ′ or v ∈ D ′

4. For every x ∈ T\{z}, x ∈ M iff x ∈ M ′ or there is y ∈ D ′

such that xy is a black edge in Gi+1

5. z ∈ M iff for each x ∈ {u, v}, either x ∈ M ′ or there is y ∈ D ′

such that xy is a black edge in Gi+1
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k-Dominating Set

Algorithm: Input: a graph G = (V ,E ), an integer k ≥ 1 and a
contraction sequence (Gn, ...,G1) of G with maximum red degree d
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k-Dominating Set

Algorithm: Input: a graph G = (V ,E ), an integer k ≥ 1 and a
contraction sequence (Gn, ...,G1) of G with maximum red degree d

▶ Initialize a map τn that takes as input profiles (T ,D,M) with
|T | < (d2 + 1)k and outputs either None if the profile is not
realizable, or outputs a set S ⊆x∈T x(G ) that realizes
(T ,D,M). Initially, τn({v}, {v}, {v}) = {v},
τn({v},∅,∅) = ∅ and None on every other input.
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contraction sequence (Gn, ...,G1) of G with maximum red degree d

▶ Let u, v be the vertices contracted in Gi+1 → Gi into z
▶ Let (T ,D,M) be a profile. There are two cases:

▶ z /∈ T : then τi (T ,D,M) = τi+1(T ,D,M)
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▶ Let u, v be the vertices contracted in Gi+1 → Gi into z
▶ Let (T ,D,M) be a profile. There are two cases:

▶ z ∈ T : inspect every set P of k-profiles consistent with
(T ,D,M)
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contraction sequence (Gn, ...,G1) of G with maximum red degree d

▶ Let u, v be the vertices contracted in Gi+1 → Gi into z
▶ Let (T ,D,M) be a profile. There are two cases:

▶ z ∈ T : inspect every set P of k-profiles consistent with
(T ,D,M)

▶ Put τi (T ,D,M) = the best ∪P∈Pτi+1(P) (the smallest one).
If all these unions are None, τi (T ,D,M) = None
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Algorithm: Input: a graph G = (V ,E ), an integer k ≥ 1 and a
contraction sequence (Gn, ...,G1) of G with maximum red degree d

▶ Let u, v be the vertices contracted in Gi+1 → Gi into z
▶ Let (T ,D,M) be a profile. There are two cases:

▶ z ∈ T : inspect every set P of k-profiles consistent with
(T ,D,M)

▶ Put τi (T ,D,M) = the best ∪P∈Pτi+1(P) (the smallest one).
If all these unions are None, τi (T ,D,M) = None

▶ If there is a P with a profile (T ,D,M) with |T | ≥ (d2 + 1)k ,
since τi+1 is undefined on this profile, we instead pick
v ∈ T\(∪x∈DB

2
i+1(x)) and make the query at

(T\{v},D\{v},M\{v})
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Theorem
This algorithm is correct
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k-Dominating Set

Theorem
This algorithm is correct

Theorem
This algorithm runs in time O(d2(d2+1)k−222(d2+1)k) where d is the
maximum red degree of the trigraphs in the contraction sequence
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Conclusion

Thank you for listening!
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