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Context

Problem: Many problems are NP-hard on general graphs:
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Context

Problem: Many problems are NP-hard on general graphs:
» k-Independent graph;
» k-Dominating Set;
» k-Coloring;
» The list goes on...

Solution: FPT algorithms...but what parameter do we fix?
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Some parameters to fix

» Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson
and Seymour 1984)
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Some parameters to fix

» Treewidth (Bertele and Brioschi 1972; Halin 1976; Robertson
and Seymour 1984)

» Linked with tree decompositions

» Only useful for sparse graphs

» Constant k: can recognize graphs with treewidth k in
polynomial time (Arnborg, Corneil, and Proskurowski 1987)

» Clique-width (Courcelle, Engelfriet, and Rozenberg 1993)

» Useful even on dense graphs
» Unknown whether we can recognize graphs with clique-width k
for constant k

» Twin-width (Bonnet, Kim, et al. 2021)

» Useful even on dense graphs
» Can mostly be computed (NP-hard still) : SAT solvers (Bergg,
Bonnet, and Déprés 2022; Schidler and Szeider 2022)
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What is twin-width?

Definition (Trigraph)

Triple G = (V,E, R):
» V vertex set;
> E C V x V black edge set
> RC V x V red edge set
» ENR=90
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What is twin-width?
Definition (Trigraph)
Triple G = (V, E, R):
> V vertex set;
> E C V x V black edge set
> RC V x V red edge set
» FNR=0
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What is twin-width?

Definition (Contraction sequence)
G (tri)graph on n vertices. Contraction sequence
G=G,Gh1,...,G,GL = K; if for all / € {1,2, ey N — 1}, Gh_;is
obtained from G,_;11 by merging two vertices u and v into a
vertex uv as follows:
» If u and v both have a black edge with w, then uv has a black
edge with w
» If neither u nor v have an edge with w, then uv has no edge
with w
» Otherwise, uv has a red edge with w
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What is twin-width?
uw and vw black = (uv)w black
uw and vw missing = (uv)w missing
otherwise (uv)w red
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uw and vw black = (uv)w black
uw and vw missing = (uv)w missing
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What is twin-width?

Definition (Twin-width)
Let G = (V, E). Denote by A,(H) the maximum red degree of a
trigraph H.

tww(G) = min { max {A (Gi)}}

Gp,...,G1 contraction sequence of G
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What is twin-width?

Definition (Twin-width)
Let G = (V, E). Denote by A,(H) the maximum red degree of a
trigraph H.

tww(G) = min { max {A/(Gj)}}

Gp,...,G1 contraction sequence of G "i=1,...,n

Definition (u(G))
If u € G;, a trigraph in a contraction sequence, then u(G) = the
set of vertices of G that were contracted to form u
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k-Independent Set

Definition (Independent Set)

An independent set / in a graph G = (V, E) is a set such that
| C V and for any u,v € I,uv ¢ E. We denote by a(G) the size of

the largest independent set of G

5/12

Carleton University yangarito@cmail.carleton.ca



k-Independent Set

Definition (Independent Set)

An independent set / in a graph G = (V/, E) is a set such that
I C V and for any u,v € I,uv ¢ E. We denote by a(G) the size of
the largest independent set of G

Problem (k-Independent Set)

Input: a graph G = (V,E), an integer k > 1
Output: yes if there exists an independent set | C V with |I| > k
and no otherwise
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k-Independent Set

Problem (k-Independent Set)

Input: a graph G = (V,E), an integer k > 1
Output: yes if there exists an independent set | C V with |I| > k
and no otherwise

How does twin-width help?
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k-Independent Set

Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)

5/12

Carleton University yangarito@cmail.carleton.ca



k-Independent Set

Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)
Definition (Partial solution)
A partial solution in the trigraph G; is a pair (T, S):
» T C V(G;) is a connected subset of vertices in the red graph
of G,'

» S C V(G) is an independent set of G such that
S CUyetu(G) and for every u e T,5SNu(G) # @
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k-Independent Set

Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)
Definition (Partial solution)
A partial solution in the trigraph G; is a pair (T, S):
» T C V(G;) is a connected subset of vertices in the red graph
of G;

» S C V(G) is an independent set of G such that
S CUyetu(G) and for every u e T,SNu(G) # @

Definition (Compatible partial solutions)

(T,S) and (T',S’) are compatible if there is no edge (no matter
the color) uv/ in G such that ue T and v’ € T’
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k-Independent Set

Idea: Use the contraction sequence to progressively build up partial
solutions (Bonnet, Geniet, et al. 2021)
Definition (Compatible partial solutions)

(T,S) and (T',S’) are compatible if there is no edge (no matter
the color) uv/ in G; such that ue T and v’ € T’

Definition (Union of compatible partial solutions)
(T,S)u(T,8)=(TUuT' ,SUS)

Remark

The union of two compatible partial solutions is not a partial
solution
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k-Independent Set

Definition (Realizable set)

Aset T C V(G;) is realizable (in G;) if there exists a set
S C V(G) such that (T,S) is a partial solution in G;
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k-Independent Set

Definition (Realizable set)

Aset T C V(G;) is realizable (in G;) if there exists a set
S C V(G) such that (T,S) is a partial solution in G;

Definition (dec)

Let X C V(G;). The set dec(X) is the set with one partial solution
in G; for each connected component of X in its red graph. If one
connected component is not realizable, then dec(X) = None.
Udec(X) = None if two of the partial solutions in X are not
compatible or if dec(X) = None
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k-Independent Set

Algorithm: Input: G = (V, E) a graph, kK > 1 an integer and a
contraction sequence (Gp, ..., G1) of G
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Algorithm: Input: G = (V, E) a graph, kK > 1 an integer and a
contraction sequence (Gp, ..., G1) of G
» Initialize the partial solutions S, = {({v},{v}),v € V(G)}
» Let u,v € Gj1 be contracted to z € G;. Initialize S; as all the
solutions in Sj41 not intersecting {u, v}
» Consider all realizable sets T > z in G;

» For each such T, add the partial solution with largest S from
among Udec(T\{z} U{u, v}),Udec(T\{z} U {u}) and
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» Initialize the partial solutions S, = {({v},{v}),v € V(G)}
» Let u,v € Gj;1 be contracted to z € G;. Initialize S; as all the
solutions in Siy1 not intersecting {u, v}
» Consider all realizable sets T > z in G;

» For each such T, add the partial solution with largest S from
among Udec(T\{z} U{u, v}),Udec(T\{z} U{u}) and
dec(T\{z} U {v}) to the set of partial solutions S;

» Before adding a partial solution to S;, we check if its S has
size > k. If so, we return yes
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k-Independent Set

Algorithm: Input: G = (V, E) a graph, kK > 1 an integer and a
contraction sequence (Gp, ..., G1) of G
» Initialize the partial solutions S, = {({v},{v}),v € V(G)}
» Let u,v € Gj;41 be contracted to z € G;. Initialize S; as all the
solutions in Si41 not intersecting {u, v}
» Consider all realizable sets T > z in G;

» For each such T, add the partial solution with largest S from
among Udec(T\{z} U {u, v}),Udec(T\{z} U {u}) and
dec(T\{z} U {v}) to the set of partial solutions S;

» Before adding a partial solution to S;, we check if its S has
size > k. If so, we return yes

» If we build S; and still have not found a solution whose S has
size > k, we return no
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k-Independent Set

This algorithm is correct
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k-Independent Set

This algorithm is correct

» By induction, we show that for every realizable set
T C V(Gj), we have (T,S) € S; such that either
IS| = a(G[UueTu(G)]) or |S| > k. We will always assume the
former, as the algorithm terminates in the latter case

5/12

Carleton University yangarito@cmail.carleton.ca



k-Independent Set

This algorithm is correct

» |H: for every realizable set T C V/(G;), we have (T,S) € S;
with [S| = a(G[UueTu(G)])

» Let u, v be contracted into z from Gj11 to G;
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k-Independent Set

This algorithm is correct

» |H: for every realizable set T C V/(G;), we have (T,S) € S;
with [S] = a(G[UueTu(G)])

» Let u, v be contracted into z from Gj11 to G;

» Let T be realizable in G;. There are two cases:

» z ¢ T: Then we inherit S from S;1 and by the induction
hypothesis, it satisfies |S| = a(G[Uu,eTu(G)])

5/12

Carleton University yangarito@cmail.carleton.ca



k-Independent Set

This algorithm is correct

» [H: for every realizable set T C V(G;), we have (T,S) € S;
with |S| = a(G[UueTu(G)])
» Let u, v be contracted into z from Gj;1 to G;

> Let T be realizable in G;. There are two cases:
> zecT:
> Let S’ be a maximum independent set of G[UucTu(G)].
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k-Independent Set

This algorithm is correct

» |H: for every realizable set T C V(G;), we have (T,S) € S;
with |S| = a(G[Uyeru(G)])
» Let u, v be contracted into z from Gj;1 to G;
» Let T be realizable in G;. There are two cases:
> zeT:

> Let S’ be a maximum independent set of G[U,eTu(G)].
» Build @ # | C {u, v} by adding u (resp. v) to I if
S'Nu(G) # & (resp. S'Nv(G) #£ @)
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k-Independent Set

This algorithm is correct

» |H: for every realizable set T C V/(G;), we have (T,S) € S;
with |S| = a(G[UueTu(G)])

» Let u, v be contracted into z from Gj;1 to G;

> Let T be realizable in G;. There are two cases:
> zeT:
> Let S’ be a maximum independent set of G[U,eTu(G)].
» Build @ # | C {u, v} by adding u (resp. v) to [ if
S"Nu(G) # @ (resp. S'Nv(G) # 2)
> By the existence of S’, the connected components of
T\{z} U1 are all realizable
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k-Independent Set

This algorithm is correct

» |H: for every realizable set T C V/(G;), we have (T,S) € S;
with |S| = a(G[UueTu(G)])

» Let u, v be contracted into z from Gj;1 to G;

» Let T be realizable in G;. There are two cases:
> zcT:

> Let S’ be a maximum independent set of G[U,eru(G)].

» Build @ # I C {u, v} by adding u (resp. v) to [ if
S'Nu(G) # o (resp. S'Nv(G) # 2)

> By the existence of S’, the connected components of
T\{z} U are all realizable

» By the induction hypothesis, dec(T\{z} U ) contains optimal
partial solutions, so its union is optimal
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k-Independent Set

This algorithm runs in time O(k>d?*n) where d is the maximum
red degree of a graph in the contraction sequence
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k-Independent Set

This algorithm runs in time O(k?>d?*n) where d is the maximum
red degree of a graph in the contraction sequence

» Enumerating the T's takes time O(d?¥)
» Checking compatibility of partial solutions takes time O(k?)
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k-Dominating Set
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k-Dominating Set

Definition (Dominating Set)
A dominating set D in a graph G = (V, E) is a set such that
D C V and for any u € V, either u € D or there is v € D such

that uv € E
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k-Dominating Set

Definition (Dominating Set)

A dominating set D in a graph G = (V, E) is a set such that
D C V and for any u € V, either u € D or there is v € D such
that uv € E

Problem (k-Dominating Set)

Input: a graph G = (V,E), an integer k > 1
Output: yes if there exists a dominating set D C V with |D| < k
and no otherwise
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k-Dominating Set

(Bonnet, Geniet, et al. 2021)

Definition (Profile of a partial solution)
A profile of a partial solution in G;j is a triple (T, D, M) of subsets
of V(G)):
» T forms a connected subset in the red graph of G;
» DMCT
> UxepB?(x) C T where B?(x) is the ball of radius 2 centered
at x in the red graph of G;
A profile such that |D| < k is called a k-profile
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k-Dominating Set

Definition (Realizable profile)
(T, D, M) is realizable with S C V(G) if:
1. S CUxerx(G)
2. forall x € V(G;), x e Diff x(G)NS # @
3. for all x € V(G;j), x € M iff x(G) is dominated by S
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k-Dominating Set

Assume that u, v are contracted to z to form G; from G
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k-Dominating Set

Definition (Consistency of profiles)
A profile (T, D, M) such that z € T is consistent with a set
{(T1, D1, M), ...,(Ty, Dy, Mp)} if the following holds. Let
T =T\{z}U{u,v},D = Uff:le and M’ = UfleMj.
1. T1,..., Ty are the red components of T’ in G; 1
2. D\{z} = D'\{u, v}
3.zeDiffue D'orveD
4. For every x € T\{z}, x € M iff x € M’ or there is y € D'
such that xy is a black edge in Gj41
5. z € M iff for each x € {u, v}, either x € M’ or thereis y € D’
such that xy is a black edge in Gj1
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k-Dominating Set

Algorithm: Input: a graph G = (V,E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d
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k-Dominating Set

Algorithm: Input: a graph G = (V, E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Initialize a map 7, that takes as input profiles (T, D, M) with
| T| < (d? 4 1)k and outputs either None if the profile is not
realizable, or outputs a set S C,c7 x(G) that realizes

(T,D, M). Initially, 7o({v},{v},{v}) = {v},
Ta({v}, @, ) = @ and None on every other input.
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k-Dominating Set

Algorithm: Input: a graph G = (V,E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Let u, v be the vertices contracted in G;11 — G; into z
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k-Dominating Set

Algorithm: Input: a graph G = (V,E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Let u, v be the vertices contracted in G; 1 — G; into z
» Let (T, D, M) be a profile. There are two cases:
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k-Dominating Set

Algorithm: Input: a graph G = (V,E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Let u, v be the vertices contracted in G;11 — G; into z
» Let (T,D, M) be a profile. There are two cases:
» z¢ T: then 7,(T,D,M) =741(T, D, M)
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k-Dominating Set

Algorithm: Input: a graph G = (V,E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Let u, v be the vertices contracted in G;11 — G; into z
» Let (T,D, M) be a profile. There are two cases:

» z e T: inspect every set P of k-profiles consistent with
(T,D, M)
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k-Dominating Set

Algorithm: Input: a graph G = (V, E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Let u, v be the vertices contracted in G 1 — G; into z
» Let (T,D, M) be a profile. There are two cases:

» z € T: inspect every set P of k-profiles consistent with
(T,D, M)

» Put 7;(T, D, M) = the best Upcp7iy1(P) (the smallest one).
If all these unions are None, 7;(T, D, M) = None
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k-Dominating Set

Algorithm: Input: a graph G = (V,E), an integer k > 1 and a
contraction sequence (Gp, ..., G1) of G with maximum red degree d

» Let u, v be the vertices contracted in G;1; — G;j into z
» Let (T, D, M) be a profile. There are two cases:
» z € T: inspect every set P of k-profiles consistent with
(T,D, M)
» Put 7;(T,D, M) = the best Upcp7i1(P) (the smallest one).
If all these unions are None, 7;(T, D, M) = None
> If there is a P with a profile (T, D, M) with | T| > (d? + 1)k,
since 7j41 is undefined on this profile, we instead pick
v € T\(UxepBA1(x)) and make the query at

(T\{v}, D\{v}, M\{v})
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k-Dominating Set

This algorithm is correct
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k-Dominating Set

This algorithm is correct

This algorithm runs in time O(dX(@*+Dk=202(d>+1)ky \where d s the
maximum red degree of the trigraphs in the contraction sequence
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Conclusion

Thank you for listening!
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