Fixed-Parameter Tractable Algorithms - Vertex Cover

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Problem Statement

A Simple Approximation Algorithm

FPT Algorithms

Kernelization

Crown Decomposition

Kernel from Linear Program

Iterative Compression

Problem Statement

Vertex Cover in Graphs

Input: A simple undirected graph G=(V,E).

Output: A subset $S\subseteq V$ of smallest cardinality such that for each edge $e=(u,v)\in E$, at least one of u or v is in S.

Complexity Results

Let G be a simple undirected graph, and let k be the cardinality of its minimum vertex cover.

- NP-Complete for graphs.
- 2. Polynomial Time Approximation Algorithm.
- 3. Exact (FPT) Algorithms:
 - 3.1 A naive algorithm running in $O(|V|^{k+1})$ time.
 - 3.2 An algorithm running in $O(|V|2^k)$ time.
 - 3.3 An algorithm running in $O(|V| + |E| + k^2 2^k)$ time.
 - 3.4 ...

Note: FPT algorithms are polynomial in graph parameters |V| and |E|, but exponential in k - the size of the vertex cover. If k is small, these algorithms are efficient.

A Simple Approximation Algorithm

Approximation via Maximal Matching

A matching $M\subseteq E$ in G=(V,E) is a collection of edges so that no two edges in M are incident to the same vertex.

Matching M is maximal, if every other edge in $E\setminus M$ shares an end point with some edge in M.

Approx Vertex Cover Algorithm:

- 1. Compute a maximal matching M of G.
- 2. Let $S \subseteq V$ be the set of vertices incident on the edges in M.
- 3. Return S as an approximation to vertex cover of G.

Observation

Any optimal vertex cover $S^* \subseteq V$ of G satisfies $|S^*| \ge |M|$.

Approximation via Maximal Matching (contd.)

Approx Vertex Cover Algorithm:

- 1. Compute a maximal matching M of G.
- 2. Let $S \subseteq V$ be the set of vertices incident on the edges in M.
- 3. Return S as an approximation to vertex cover of G.

Observation

Set of vertices in S forms a vertex cover of G. Moreover, the graph $G\setminus S$ is an independent set.

Claim

 $|S|=2|M|\leq 2|S^*|.$ Thus, the above algorithm is a 2-approximation algorithm for the vertex cover problem. The algorithm runs in O(|V|+|E|) time.

FPT Algorithms

A Brute-Force Algorithm

Problem: Whether G = (V, E) has a vertex cover of size $\leq k$?

Easy solution:

- Consider all subsets $S \subseteq V$ of size k.
- Check whether $G \setminus S$ is an independent set.

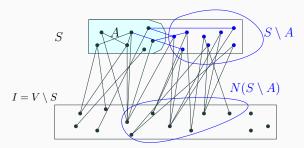
Time Complexity: $\binom{n}{k}O(n+m)=O(n^k(n+m)),$ where n=|V| and m=|E|.

A Brute-Force Algorithm (contd.)

Problem: Whether G = (V, E) has a vertex cover of size $\leq k$?

- 1. Find a Maximal Matching M of G.
- 2. |M| > k, return G has no vertex cover of size $\leq k$.
- 3. Let S be the set of vertices constituting the edges in M. Note: S forms a vertex cover of G and $I=V\setminus S$ is an independent set.
- 4. Consider all possible subsets A of S of size $\leq k$ and check whether $A \cup (N(S \setminus A) \cap I)$ is a vertex cover of G of size at most k. If true, output $A \cup (N(S \setminus A) \cap I)$ as the vertex cover. (N(X) represents neighbors of vertices in X in G.)

A Brute-Force Algorithm (contd.)



S is a vertex cover and I an independent set of G.

Observation

Let S be a vertex cover of G=(V,E). For a subset $A\subseteq S$, $A\cup (N(S\setminus A)\cap I)$ is a vertex cover of G if and only if there are no edges in E such that both of its end points are in $S\setminus A$.

9

Analysis of Brute-Force Algorithm (contd.)

- 1. Finding maximal matching M in G requires O(n+m) time.
- 2. Number of all possible subsets of size at most k of S is $2^{2k} = 4^k$.
- 3. Checking whether the set $A \cup (N(S \setminus A) \cap I)$ forms the vertex cover of size at most k requires O(n+m) time.
- 4. Thus, the overall complexity is $4^k n^{O(1)}$.
- 5. The time complexity is of type $f(k)n^{O(1)}$ a function in k (may be exponential) and a polynomial function in the size of G.

Fixed-Parameter Tractable

A problem is said to be *fixed parameter tractable* with respect to a parameter k if there is an algorithm with running time $f(k)n^{O(1)}$, where n is the size of the problem and f is independent of n.

Example: Vertex Cover is FPT.

A Branch-and-Bound Algorithm

Observation

For each edge e=(uv) of G, any vertex-cover of G contains at least one of u or v.

Proof: Follows from definition of vertex cover of G.

A FPT Algorithm for Vertex Cover

Algorithm VertexCoverFPT(G, k)

- 1. if G has no edges then return TRUE
- 2. if k = 0 then return FALSE
- 3. Let $e = (uv) \in E$ be an edge of G
- 4. if VertexCoverFPT(G-u, k-1) then return TRUE
- 5. if VertexCoverFPT(G-v,k-1) then return TRUE
- 6. return FALSE

Note: Above algorithm is a Decision Algorithm - answers whether G has a vertex cover of size $\leq k$?

With some extra work, we can also find the vertex cover $S \subseteq V$ of size $\leq k$.

Correctness

The correctness of the algorithm is based on induction on the size of the vertex cover k.

- If $k = 0 \implies G$ has no edges and Step 1 returns TRUE.
- Let G = (V, E) be a graph with vertex cover S of size k > 0.
- To cover the edge e=(uv), S must contain at least one of u or v.
- If $u \in S$, the graph G-u (i.e., remove u and all its incident edges) has vertex cover of size at most k-1. Step 4 returns TRUE.
- If $u \not \in S$, then $v \in S$, G-v has vertex cover of size at most k-1. Step 5 returns TRUE.
- If both returns FALSE, then clearly G doesn't have a vertex cover of size $\leq k$.

Complexity Analysis

Observe that

- Recursion 'tree' is a complete binary tree of height k.
- It consists of 2^k leaves and 2^{k-1} internal nodes.
- Each internal node requires computation time of O(|V|) (e.g. using adjacency list representation of graphs).
- For each leaf node, we need to check whether there are no edges in the remaining graph.
- Overall Running Time = $(2^k + 2^{k-1})O(|V| + |E|) = O((|V| + |E|)2^k)$

Result 1

Let G=(V,E) be a simple undirected graph that has a vertex cover of size at most k. We can find the minimum vertex cover of G in $O((|V|+|E|)\times 2^k)$ time.

Kernelization

Kernel

- $\langle Q,k\rangle \xrightarrow{\mathcal{A}} \langle Q',k'\rangle$ Given a problem instance Q with parameter k, we will execute an algorithm \mathcal{A} , running in polynomial time, to obtain an equivalent instance Q' such that Q has a solution if and only if Q' has a solution.
- We say A is a kernelization algorithm if the size of Q' and k' can be bounded by some function of k (and independent of the size of problem Q.) It will be ideal to bound the size of Q' and k' by a polynomial function in k, preferably linear or quadratic functions.
- The kernelization algorithm A is usually broken down as a set of rules.
 For example, for the vertex cover problem, a simple rule is to remove all vertices of degree 0, and the resulting graph has a vertex of size ≤ k if and only if the original graph has a vertex cover of size ≤ k.

Observations

Observation (high-degree vertices)

If G has a vertex u of degree >k. Let $S\subseteq V$ be a vertex-cover of G with $|S|\leq k$. Then $u\in S$.

Proof: If $u \notin S$, then all its neighbours must be in S. But u's has > k neighbors and $|S| \le k$.

 \implies We can place u in the vertex cover and remove u and all its incident edges in G, and seek for a vertex cover of size at most k-1 in the resulting graph.

Observation

Observation

Let S' be the set of all vertices in G whose degree is >k. Let G' be the graph obtained from G by removing all vertices in S' (and their incident edges). G has a vertex cover of size $\leq k$, if and only if, G' has a vertex cover of size $\leq k' = k - |S'|$.

Observation (contd.)

Observation

Let S' be set of all vertices in G whose degree is >k. Let G' be the graph obtained from G by removing all vertices in S' (and their incident edges). The degree of each vertex in G' is $\leq k$.

Observation (contd.)

Observation

If graph G' has more than kk' edges, then G' doesn't have any vertex cover of size $\leq k'$.

Proof: Each vertex in the cover of G' can cover at most k edges. Thus, k' vertices cannot cover more than kk' edges.

19

A Faster FPT Algorithm

Here are all the steps in the algorithm:

Algorithm Kernelization-FPT(G, k)

- 1. Let S' be the vertices of G of degree > k. If |S'| > k, return FALSE.
- 2. Let G' = G S' and let k' = k |S'|.
- 3. If G' has more than kk' edges, return FALSE
- 4. Let G'' be the graph obtained after removing isolated vertices from G'
- 5. Return VertexCoverFPT(G'', k' = k |S'|)

Correctness:

- From observation on high degree vertices, all vertices in ${\cal G}$ of degree > k are in the vertex cover.
- By Observations, if the graph G' has more than kk' edges, than G cannot have vertex cover of size $\leq k$.
- By Result 1, VertexCoverFPT(G'', k') correctly returns the outcome of whether G'' has a vertex cover of size $\leq k'$.

Complexity Analysis

- 1. Let S' be the vertices of G of degree >k. If |S'|>k, return FALSE.
- 2. Let G' = G S' and let k' = k |S'|.
- 3. If G' has more than kk' edges, return FALSE
- 4. Let G'' be the graph obtained after removing isolated vertices from G'
- 5. Return VertexCoverFPT(G'', k' = k |S'|)
- Step 1 takes O(|V| + |E|) time
- Step 2 takes O(|V| + |E|) time
- Step 3 takes O(|V| + |E|) time
- Step 4 takes O(|V| + |E|) time

FPT+Kernelization

Consider the graph G'' obtained in Step 4.

G'' has at most $kk' \leq k^2$ edges.

Since G'' has no isolated vertices, it has $\leq 2k^2$ vertices.

Graph G'' is the 'small' kernel for the vertex cover problem. We can execute an exponential time algorithm on G''.

By Result 1, in Step 5, execution of VertexCoverFPT(G'',k') takes $O(k^2\times 2^k)$ time.

Result 2

Let G=(V,E) be a simple undirected graph that has a vertex cover of size at most k. Vertex cover problem admits a kernel consisting of $O(k^2)$ vertices and $O(k^2)$ edges. We can find the minimum vertex cover of G in $O(|V|+|E|+k^22^k)$ time.

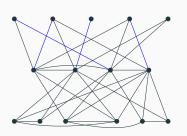
Crown Decomposition

Crown Decomposition - A general kernelization technique

Crown Decomposition of G

Crown decomposition of a graph G=(V,E) is a partitioning of the set of vertices V in three disjoint sets $V=C\cup H\cup R$ such that

- 1. There is no edge between vertices in C and R. H separates C from R.
- 2. C is a non-empty independent set.
- 3. There is a matching of size |H| in the bipartite graph induced between the vertices in C and H. I.e. the matching saturates the vertices in H.



C (Independent Set)

H (Separates C from R)

R

Crown Lemma

Main Lemma

Let G=(V,E) be a graph with at least 3k+1 vertices, none of them are isolated. In polynomial time we can determine either G has a matching of size at least k+1 or find its crown decomposition.

Proof: We can use any of the matching algorithms to determine whether G has a matching of size $\geq k+1$ in polynomial time. Assume that all possible matchings have fewer than k+1 edges.

- 1. Let M be a maximal matching of G. Let V_M be the set of vertices corresponding to edges in M. The vertices $I=V\setminus V_M$ forms an independent set.
- 2. Consider the bipratite graph $B(V_M,I)$ consisting only of edges between V_M and I in G.
- 3. Let M' be a maximum matching in B and let X be a minimum vertex cover of B.
- 4. $|X| = |M'| \le k$, as B is bipartite graph and maximum matching in G has < k+1 edges (by assumption).

Claim

5. Claim

5. $X \cap V_M \neq \emptyset$.

Proof: Suppose not. I.e. $X \cap V_M = \emptyset$.

$$\implies X \subseteq I$$

We claim that X=I. If so, $|V_M|+|I|\leq 2k+k=3k$, and that contradicts the fact that G has at least 3k+1 vertices and thus it can't be that $V_M\cap X=\emptyset$.

To complete this part of the argument, suppose $X \neq I$.

Let
$$v \in I \setminus X$$
.

Since no vertex of G is isolated, there is an edge uv incident on v where $u \in V_M$.

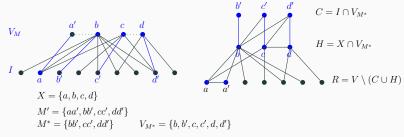
But to cover the edge uv, we need to have $u \in X$.

But we assumed that $V_M \cap X = \emptyset$. \square

Proof of Lemma (contd.)

Now we have that $X \cap V_M \neq \emptyset$.

6. Since |X|=|M'|, exactly one end of each edge of M' is in X. Let $M^*\subseteq M'$ such that every edge in M^* has one end point in $X\cap V_M$. Let V_{M^*} be the union of all vertices defining the edges in M^* .



7. Define the sets C, H, and R for the crown decomposition as follows:

$$H = X \cap V_{M^*}$$
; $C = I \cap V_{M^*}$; $R = V \setminus (H \cup C)$

Observations on C, H, and R

Crown Set C

The set $C = I \cap V_{M^*}$ is a non-empty independent set.

Proof: C is independent as I is independent. $C \neq \emptyset$ as $X \cap V_M \neq \emptyset$, and each edge in the matching M' contributes exactly one end point to the vertex cover X of $B(V_M, I)$. \square

Head Set H

The set $H=X\cap V_{M^*}$ separates C from R. Moreover, the induced bipartite graph on $C\cup H$ has a matching of size |H|.

Proof: For any vertex $v \in C = I \cap V_{M^*}$, $\exists u \in H = X \cap V_{M^*}$ such that $uv \in M^* \subseteq M'$ (and $u \in X$) $\implies v \not\in X$ as for any edge $uv \in M'$ exactly one of its ends is in X.

Thus, $C \cup H$ has a matching of size |H|.

Since $v \in I$ and $v \notin X$, all neighbors of v in $B(V_M, I)$ are in $X \cap V_{M^*} = H$. \square

Crown Lemma (contd.)

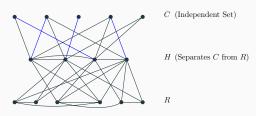
Main Lemma

Let G=(V,E) be a graph with at least 3k+1 vertices, none of them are isolated. In polynomial time we can determine either G has a matching of size at least k+1 or find its crown decomposition.

Observe that the main computational steps are:

- Finding a maximum matching in ${\cal G}$
- Finding the sets C, H and R.

Each step can be implemented in polynomial time.



Small Kernel for Vertex Cover using Crown Decomposition

Let G = (V, E) be the given graph and let k be an integer parameter.

Question: Is there a vertex cover of size at most k?

We use the crown decomposition to find a small kernel as follows:

Algorithm VC-Kernel $\langle G, k \rangle$

- 1. Remove isolated vertices from G.
- 2. If G has $\leq 3k$ vertices, output G as the kernel and terminate.
- 3. Apply Crown Lemma on G. Either it reports that matching in G has $\geq k+1$ edges ($\implies G$ has a vertex cover of size > k) or a partitioning $V = C \cup H \cup R$.
- 4. Place all vertices in H in the vertex cover, and execute VC-Kernel $\langle G-H,k-|H|\rangle$.

Correctness of Algorithm VC-Kernel

Correctness of Algorithm VC-Kernel

The algorithm reports whether G=(V,E) has a vertex cover of size >k or outputs a kernel of size $\leq 3k$.

Proof: If \exists matching of size $\geq k+1$, the vertex cover of G requires $\geq k+1$ vertices. Otherwise, consider the crown decomposition $V=C\cup H\cup R$.

- Recall, C is independent. $H \neq \emptyset$. H separates C from R. \exists matching of size |H| in the bipartite graph formed by C and $H \Longrightarrow H$ is a vertex cover of induced graph of $C \cup H$.
- Graph G-H consists of isolated vertices in C, and possibly some isolated vertices in the set R. They will be removed in the next call to VC-Kernel $\langle G-H, k-|H| \rangle$.
- \implies Crown decomposition reduces the problem to finding a vertex cover of size $\leq k-|H|$ in graph G-H. As $H\neq\emptyset$, G-H is a smaller graph.
- Recursion terminates when G has fewer than 3k+1 vertices. \square

Kernel from Linear Program

Integer Linear Program for Vertex Cover

Integer LP for Vertex Cover

Let G=(V,E) be the given graph. Associate an indicator 0-1 variable x_v for each vertex $v\in V$ that indicates whether v is in the cover or not. The LP is given by

Objective Function:
$$\min \min \sum_{v \in V} x_v$$
 Subject to:
$$\forall e = (uv) \in E: x_u + x_v \geq 1$$

$$x_v \in \{0,1\}$$

Observation

Above ILP results in a vertex cover. Each edge is covered because of the constraint $x_u + x_v \geq 1$, and at least one of u or v has to be 1 indicating that the corresponding vertex is in the cover.

Relaxed LP for Vertex Cover

Since ILP's are NP-Hard, we relax it and solve the relaxed LP in polynomial time.

Relaxed LP for Vertex Cover

Objective Function:
$$\min \sum_{v \in V} x_v$$
 Subject to:
$$\forall e = (uv) \in E: x_u + x_v \geq 1$$

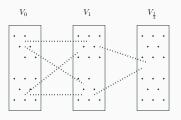
$$\mathbf{0} \leq \mathbf{x_v} \leq \mathbf{1}$$

Note: Variables x_v 's can take fractional values. The value of the objective function of the relaxed LP is a lower bound on the size of the vertex cover.

Three Sets

Define three sets of vertices based on LP values of variables x_v 's:

$$V_0=\{v\in V|x_v<rac{1}{2}\},\,V_1=\{v\in V|x_v>rac{1}{2}\},\,{
m and}\,\,V_{rac{1}{2}}=\{v\in V|x_v=rac{1}{2}\}.$$



Observations

- 1. V_0, V_1 , and $V_{\frac{1}{2}}$ is a partition of V, i.e. $V = V_0 \cup V_1 \cup V_{\frac{1}{2}}$
- 2. The set V_0 is an independent set.
- 3. There are no edges between vertices in V_0 and $V_{\frac{1}{2}}$.

Nemhauser-Trotter theorem

$$V_0 = \{v \in V | x_v < \frac{1}{2}\}, V_1 = \{v \in V | x_v > \frac{1}{2}\}, \text{ and } V_{\frac{1}{2}} = \{v \in V | x_v = \frac{1}{2}\}.$$

Theorem

There is a minimum vertex cover $S\subseteq V$ of G such that $V_1\subseteq S\subseteq V_1\cup V_{\frac{1}{2}}$

Proof: Let S^* is a minimum vertex cover of G.

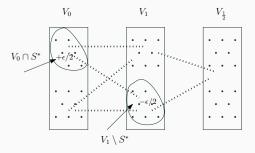
- Define $S = (S^* \setminus V_0) \cup V_1$.
- S is a vertex cover of G as any vertex in V_0 is only adjacent to vertices in V_1 .

Using contradiction, we show that S forms a minimum vertex cover.

- Assume $|S|>|S^{\ast}|$
- Observe that $|S|=|S^*|-|S^*\cap V_0|+|V_1\setminus S^*|$ $\implies |V_1\setminus S^*|>|S^*\cap V_0|$ as we assumed $|S|>|S^*|$.
- Now we will construct another feasible solution of the relaxed LP that has a smaller optimum value contradicting the optimality of LP.

Nemhauser-Trotter theorem (contd.)

Define
$$\epsilon = \min\{|x_v - \frac{1}{2}|, v \in V_0 \cup V_1\}.$$

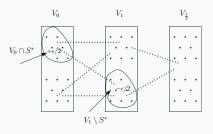


Modify x_v values as follows:

- For all vertices $v \in V_1 \setminus S^*$: set $y_v = x_v \frac{\epsilon}{2}$.
- For all vertices $v \in V_0 \cap S^*$: set $y_v = x_v + \frac{\epsilon}{2}$.
- For all remaining vertices: set $y_v = x_v$
- Note that $\sum x_v > \sum y_v$, as we had $|V_1 \setminus S^*| > |S^* \cap V_0|$.
- Next we show that y_v values satisfy the constraints of relaxed LP
- $\implies x_v$'s are not optimal and that leads to a contradiction to optimality of LP.

Nemhauser-Trotter theorem (contd.)

- Consider any edge $e = (uv) \in G$. We need to show that $y_u + y_v \ge 1$.
- Consider the cases where one of the end vertices of any edge is in $V_0 \cap S^*$ or $V_1 \setminus S^*$, as for all other edges $y_u + y_v = x_u + x_v \ge 1$.



- (A) Suppose $u \in V_0 \cap S^*$: v can only be in V_1 . If $v \in V_1 \setminus S^*$, $x_u + x_v = y_u + \epsilon/2 + y_v \epsilon/2 = y_u + y_v \ge 1$. If $v \in V_1 \cap S^*$, $y_u + y_v = x_u + \epsilon/2 + x_v \ge x_u + x_v \ge 1$.
- (B) $u \in V_1 \setminus S^*$: If $v \in V_0$, a similar argument applies. If $v \in V_{\frac{1}{2}}$, $y_u + y_v = x_u \epsilon/2 + x_v \ge 1$ as $x_v = \frac{1}{2}$ and $x_u > \frac{1}{2} + \epsilon/2$. \square

Applying Nemhauser-Trotter theorem to vertex cover

We know that an optimal vertex cover S satisfies $V_1 \subseteq S \subseteq V_{\frac{1}{2}} \cup V_1$. Perform the following steps to determine if G has a vertex cover of size $\leq k$.

- **Step 1:** If value returned by relaxed LP is > k. Report G has vertex cover of size > k and Stop.
- **Step 2:** Include V_1 in the vertex cover and determine if $G \setminus (V_0 \cup V_1)$ has a vertex cover of size $\leq k |V_1|$.

Reduced graph $G \setminus (V_0 \cup V_1)$

G has a vertex of size $\leq k$ if and only if $G\setminus (V_0\cup V_1)$ has a vertex cover of size $\leq k-|V_1|$.

Proof: We know that there is a minimum vertex cover S of G such that $V_1 \subseteq S \subseteq V_{\frac{1}{2}} \cup V_1$. If S is a vertex cover of size $\leq k$ for G, $\implies S \setminus V_1$ is a vertex cover of size $\leq k - |V_1|$ for the graph induced by $V \setminus (V_0 \cup V_1) = V_{\frac{1}{3}}$.

For the other direction, observe that the graph induced by V_0 is isolated, and only has edges to the vertices in the set V_1 . If S' is a vertex cover of the graph induced by $V_{\frac{1}{2}}$, $S' \cup V_1$ is a vertex cover of G. \square

Cardinality of $V_{rac{1}{2}}$

Cardinality of $V_{\frac{1}{2}}$

$$|V_{\frac{1}{2}}| \le 2k.$$

Proof: By definition, the linear program has assigned each variable $x_v \in V_{\frac{1}{2}}$ the value of $\frac{1}{2}$. Thus,

$$|V_1| = \sum_{v \in V_{\frac{1}{2}}} 2x_v$$

$$\leq 2\sum_{v \in V} x_v$$

$$\leq 2k \quad \Box$$

Small Kernel for Vertex Cover

Lemma

The induced graph on the vertices in $V_{\frac{1}{2}}$ forms a kernel for the vertex cover problem consisting of at most 2k vertices. Moreover, we can determine the kernel in polynomial time.

Proof:

- Linear programs can be solved in polynomial time and we can determine if its objective value $\leq \frac{1}{2}$.
- We can form the sets $V_0,V_1,$ and $V_{\frac{1}{2}}$ in O(|V|) time.
- Computation of the induced graph on $V_{\frac{1}{2}}$ takes O(|V|+|E|) time.
- Thus we can determine the kernel of size $\leq 2k$ of G in polynomial time provided that it has a vertex cover of size $\leq k$.

Iterative Compression

Illustration via Vertex Cover

A Property of Vertex Cover

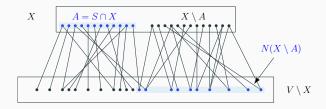
Let $X,S\subseteq V$ be two vertex covers of G=(V,E). Let $A=S\cap X$, and let $N(X\setminus A)$ represent neighbors of vertices in $X\setminus A$ in the set $V\setminus X$. The set $Y=A\cup N(X\setminus A)$ is a vertex cover of G if the graph induced by vertices in $X\setminus A$ is an independent set.

Proof: X is a vertex cover $\implies V \setminus X$ is an independent set.

 $A \subseteq Y \implies$ all edges incident to A are covered.

 $N(X \setminus A) \subseteq Y \implies$ all edges incident to $N(X \setminus A)$ are covered.

If $X \setminus A$ is independent, Y is a vertex cover of G. \square

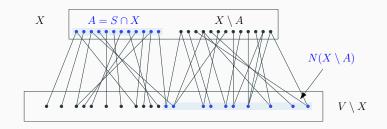


$\textbf{Large VC} \rightarrow \textbf{Small VC}$

Input: $X \subseteq V$, G = (V, E), |X| = k + 1, and X is a vertex cover of G.

Output: Does G contain a vertex cover of size $\leq k$?

Idea: Select an arbitrary subset $A \subset X$ of $\leq k$ vertices. Check whether there exists a vertex cover $S \supseteq A$ consisting of k vertices.



Large VC → Small VC

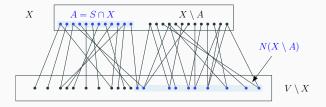
Observation

Let $N(X\setminus A)$ represent the neighbors of $X\setminus A$ in $V\setminus X$. Set $S=A\cup N(X\setminus A).$ S is the required vertex cover of G if

- 1. $|S| \leq k$.
- 2. There are no edges in the graph induced by $X \setminus A$.

Given X, we can try all possible subsets A of X.

subsets A of $X=O(2^k)$, and for each subset we can test the required conditions in O(|V|+|E|) time.



Iterative Compression

Compression algorithm for testing whether G has a vertex cover of size $\leq k$:

- **Step 1:** Consider an arbitrary permutation of vertices of G. Let it be v_1, \ldots, v_n .
- **Step 2:** Let G_k be the graph induced by vertices $V_k = \{v_1, \dots, v_k\}$. Note that $X = V_k$ is a vertex cover of G_k of size k.
- **Step 3:** For i := k + 1 to n do
 - 1. Compute G_i by adding the vertex v_i and all of its incident edges to G_{i-1} . Note that $V_i = \{v_1, \dots, v_i\}$.
 - 2. Set $X \leftarrow \{v_i\} \cup X$. Note that X is a vertex cover of G_i .
 - 3. If |X| = k + 1, check whether there exists a vertex cover $S \subset V_i$ of size $\leq k$ for G_i . If so, set $X \leftarrow S$, otherwise report G doesn't have a vertex cover of size $\leq k$.

Iterative Compression

Claim

The above procedure takes $O(2^k|V|(|V|+|E|))$ time to determine whether G has a vertex cover of size $\leq k$.

Proof: Note that $G = G_n$.

- At the start of the iteration $i \in \{k+1, n\}$, we know that X is a vertex cover of size $\leq k$ for the graph G_{i-1} .
- If $|X \cup v_i| \le k$, we already have a vertex cover of size $\le k$ for G_i .
- Otherwise, we apply the observation as X is a vertex cover of G_i consisting of k+1 vertices and we are seeking a vertex cover S of size at most k. We consider all possible subsets A of size $\leq k$ of X and determine whether there exists $S \supset A$ consisting of $\leq k$ vertices that covers G_i .
- Outcome is either we find a set S, or we fail. If we find S, we set $X \leftarrow S$ and proceed to the next iteration. If we fail, G can't have a vertex cover of size $\leq k$ as its subgraph G_i doesn't admit vertex cover of size $\leq k$.
- Running time for each iteration is $O(2^k(|V|+|E|)$. \square

Iterative Compression via FVS

Feedback Vertex Set (FVS)

Let G=(V,E) be a simple undirected graph. A subset $S\subset V$ of vertices is called a feedback vertex set if the graph induced on the vertices $V\setminus S$ (denoted by $G(V\setminus S)$) is acyclic.

FVS Decision Problem: Does G contain a FVS of size at most k?

We will first look into a specific version of FVS problem, and then show how an iterative compression technique can be applied to answer the decision problem.

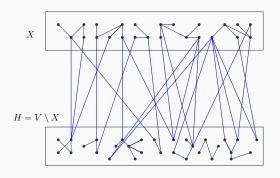
Disjoint Feedback Vertex Set Problem

Input consists of G=(V,E), a parameter k, a FVS $X\subset V$ of size k+1. Decide whether G has FVS $S\subseteq V\setminus X$ of size $\leq k$? We denote this problem as D-FVS(G,X,k).

Disjoint Feedback Vertex Set Problem

$G(V \setminus X)$ and G(X) are forests

- If X is FVS of G=(V,E), the graph, $G(H=V\setminus X)$, induced on the vertices $H=V\setminus X$ is a forest.
- Some S ⊂ H can be FVS of G provided that the graph, G(X), induced on the vertices of X is acyclic.



Reduction Rules

We apply the following reduction rules exhaustively to simplify the graph in order to find a disjoint-FVS.

- R1: Delete all vertices of degree ≤ 1 from G. They can't be in any FVS of G.
- **R2:** If $\exists v \in H$ that has two or more edges incident to the same component in X (i.e., $G(X \cup \{v\})$ has cycle(s)) $\implies v$ has to be in FVS. Thus, remove v from G and solve D-FVS $(G \setminus \{v\}, X, k-1)$. If k < 0, report G doesn't have a D-FVS of size $\leq k$.
- **R3:** Let $v \in H$ be a vertex of degree two in G and let u and w be its neighbors. If u or $w \in H$, remove v and add an edge uw (this may create a multi-edge between u and w).

Fixed-Parameter Tractable Algorithms - Vertex Cover
Legislative Compression
Reduction Rules

2022-09-05

We apply the following reduction rules exhaustively to simplify the graph in order to find a disjoint-FVS.

R1: Delete all vertices of degree \leq 1 from G. They can't be in any FVS of G.

Reduction Rules

- R2: If $\exists v \in H$ that has two or more edges incident to the same component in X (i.e., $G(X \cup \{v\})$ has cycle(s)) $\Longrightarrow v$ has to be in FVS: Thus, remove of form G and solve D-FVS($G\setminus \{v\}, X, k-1\}$. If k < 0, report G doesn't have a D-FVS of size $\leq k$.
- R3: Let $v \in H$ be a vertex of degree two in G and let u and w be its neighbors. If u or $w \in H$, remove v and add an edge uw (this may create a multi-edge between u and w).
- 1. In R3, if both $u, w \in X$, no shortcut is added. The reason is that none of vertices in X can be in D-FVS.
- 2. After rules R1-R3 are applied exhaustively, each vertex in H has degree at least 2. For all non-isolated vertices in G(H), their degree is ≥ 3 .

Observation

Structure of the resulting graph

Let ${\cal G}$ be the graph obtained after applying the reduction rules R1-R3 exhaustively.

- 1. The number of connected components in G(X) is $\leq k+1$.
- 2. Consider the forest G(H) induced by vertices in H. For any isolated vertex in G(H) its degree is ≥ 2 in G. For any non isolated vertex in G(H), its degree is ≥ 3 in G.

Branching on degree ≤ 1 vertices of forest H

Perform the following branching steps for any degree ≤ 1 vertex v of G(H)

- $v \in \mathbf{D} ext{-}\mathbf{FVS}$: Execute $\mathrm{D} ext{-}\mathrm{FVS}(G\setminus\{v\},X,k-1)$.
- $v \not\in \mathbf{D\text{-FVS}}$: Move v to the set X, merge the components in X that are adjacent to v, and execute $\mathbf{D\text{-FVS}}(G, X \cup v, k)$.

Note: During each branching, we also apply the reduction rules.

Correctness of Branching

We make some observations about the branching process.

- 1. In each call to branching, we either reduce k by 1, or reduce the number of connected components in X by at least 1. Therefore, the branching process terminates in at most 2k+1 steps, as there are $\leq k+1$ components in G(X).
- 2. Moving a degree ≤ 1 vertex $v \in G(H)$ to X is safe as $G(X \cup \{v\})$ is acyclic. Otherwise, we would have applied the reduction rule R2.
- 3. If ever k < 0, we terminate and report that D-FVS(G, X, k) has no solution.
- 4. It is possible that we may reach a situation during branching where we have a single component in G(X). Remember that we are still applying the reduction rules R1-R3, and that ensures what vertices will be added to D-FVS.

D-FVS Summary

D-FVS

Discrete feedback vertex set problem D-FVS(G,X,k) can be solved in $O(4^k n^{O(1)})$ time, where n is the number of vertices in G.

Proof:

- Rules R1-R3 can be implemented in polynomial time with respect to the size of ${\cal G}$.
- Branching terminates in at most 2k+1 steps, where in each step either we include a vertex v of degree ≤ 1 of G(H) in D-FVS or exclude it.
- Thus, the branching tree has $2^{2k+1} = O(4^k)$ nodes.

Г

Iterative Compression for FVS

Compression algorithm for testing whether G has FVS of size $\leq k$:

- **Step 1:** Consider an arbitrary permutation of vertices of G. Let it be v_1, \ldots, v_n .
- **Step 2:** Let G_k be the graph induced by vertices $V_k = \{v_1, \dots, v_k\}$. Note that $X = V_k$ is a FVS of G_k of size k.
- **Step 3:** For i := k + 1 to n do
 - 1. Compute G_i by adding vertex v_i and all of its incident edges to G_{i-1} . Note: $V_i = \{v_1, \dots, v_i\}$.
 - 2. Set $X \leftarrow \{v_i\} \cup X$. Note that X is a FVS of G_i .
 - 3. If |X|=k+1, check whether there exists a FVS $S\subset V_i$ of size $\leq k$ for G_i . If so, set $X\leftarrow S$, otherwise report G doesn't have a FVS of size $\leq k$.

To find S, we try all subsets $A\subset X$ and solve for D-FVS $(G(V_i)\setminus A, X\setminus A, k-|A|)$.

FVS Summary

D-FVS

For a given graph G and a parameter k, we can check in $5^k n^{O(1)}$ time whether G has a feedback vertex set of size at most k, where n is the number of vertices in G.

Proof: Recall that in the D-FVS(G,X,k) problem, the input consists of a graph G, a parameter k, a FVS $X \subset V$ of size k+1, and the problem is to decide whether G has FVS $S \subseteq V \setminus X$ of size $\leq k$?

Consider any iteration $i \ge k + 1$ of the algorithm:

- We have the FVS $X \cup \{v_i\}$ of size $\leq k+1$ for $G_i \implies G_i(V_i \setminus X)$ is a forest.
- Our task is to decide if $\exists S \subset V_i$ of size $\leq k$ such that S is FVS of G_i .
- We make guess of which vertices of S are from X. Assume $A = S \cap X$.
- Consider the graph $G_i(V_i \setminus A)$.
- We want a FVS of size $\leq k |A|$ in $G_i(V_i \setminus A)$ where all of its vertices are from the set $V_i \setminus X$.

This is precisely the D-FVS($G(V_i) \setminus A, X \setminus A, k - |A|$) problem.

FVS Analysis (contd.)

Next we analyze the running time.

In iteration $i \geq k+1$, we try all possible subsets A of X, where |X|=k+1, and for each subset A, we make a call to an appropriate D-FVS $(G(V_i) \setminus A, X \setminus A, k-|A|)$ problem.

We know that the running time for the D-FVS problem is $4^{k-|A|}n^{O(1)}$.

Therefore, the total running time for the i-th iteration is

$$\sum_{j=0}^{k} {k+1 \choose j} 4^{k-j} n^{O(1)} = 5^k n^{O(1)}$$

Note that $(1+4)^k = \sum_{j=0}^k {k+1 \choose j} 1^j \cdot 4^{k-j} = 5^k$.

Since i ranges from k+1 to n, the total running time for the FVS decision problem is $5^k n^{O(1)}$.

References

- 1. Downey and Fellows, Parameterized Complexity. Springer, 1999.
- 2. Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, and Saurabh, Parameterized Algorithms, Springer 2015.