Densest Subgraph Problem

Anil Maheshwari

anil@scs.carleton.ca School of Computer Science Carleton University Canada

Outline

Problem Statement

Greedy Peeling Algorithm

Problem Statement

Problem Statement

Input: A simple undirected graph G = (V, E).

Aim: Output a subset of vertices $S \subseteq V$ that maximizes $\frac{|E(S)|}{|S|}$, where E(S) is the set of edges in the induced subgraph on S.

Main Source: Chekuri, Quanrud and Torres, SODA 2022.

Note: We follow the description from the survey paper of Lanciano et al. from arXiv 2024.

Notation

- Graph G = (V, E), where $V = \{v_1, ..., v_n\}$.
- For a subset $S\subseteq V$, let G(S)=(S,E(S)) be the graph induced by vertices in S.
- E(S) is the subset of edges of E that are among the vertices in S. I.e., the edges in G(S).
- Let e(S) = |E(S)|.
- Let $deg_S(v)$ is the degree of vertex v in G(S).
- Density of the subgraph G(S): $d(S) = \frac{e(S)}{|S|}$.
- $S^* \subseteq V$ has the maximum density. I.e., $d(S^*) \ge d(S)$ for any $S \subseteq V$.

4

Greedy Peeling Algorithm

Greedy Peeling Algorithm

- **Step 1:** $S_n := V$ and i := n.
- **Step 2:** While i > 1 do
 - 1. $v_{\min} = \underset{v \in S}{\operatorname{argmin}} \{ deg_{S_i}(v) \}.$

I.e., pick the vertex of minimum degree in S_i .

- 2. $S_{i-1} = S_i \setminus \{v_{\min}\}.$
- **Step 3:** $S_{\max} = argmax\{d(S)|S \in \{S_1, ..., S_n\}\}.$
- **Step 4:** Return S_{\max}

Main Claim

The density of S_{\max} is at least 1/2 of the density of an optimal subset of V. I.e. $d(S_{\max}) \geq \frac{1}{2}d(S^*)$.

Lower bound on degree of vertices in S^{\ast}

Claim 1

For any vertex $v \in S^*$, $deg_{S^*}(v) \ge d(S^*)$.

Proof:

- By definition
$$d(S^*) = \frac{e(S^*)}{|S^*|} \geq \frac{e(S^* \backslash \{v\})}{|S^*|-1}.$$

$$-e(S^* \setminus \{v\}) = e(S^*) - deg_{S^*}(v).$$

- We have
$$\frac{e(S^*)}{|S^*|} - \frac{e(S^* \setminus \{v\})}{|S^*|-1} \geq 0.$$

$$\Leftrightarrow \frac{e(S^*)}{|S^*|} - \frac{e(S^*) - deg_{S^*}(v)}{|S^*| - 1} \ge 0.$$

$$\Leftrightarrow \frac{deg_{S^*}(v)}{|S^*|-1} - \frac{e(S^*)}{|S^*|(|S^*|-1)} \ge 0.$$

$$\Leftrightarrow \frac{deg_{S^*}(v)}{|S^*|-1} - \frac{d(S^*)}{|S^*|-1} \ge 0.$$

$$\Leftrightarrow deg_{S^*}(v) \ge d(S^*)$$

Competitive Ratio of Greedy Peeling

Main Claim

The density of S_{\max} is at least 1/2 of the density of an optimal subset of V. I.e. $d(S_{\max}) \geq \frac{1}{2}d(S^*)$.

Proof: GP removes vertices, and at some point it will remove a vertex from S^{*} for the first time.

- Let v^* be the first vertex in S^* that is removed by GP, and just before its removal let the set of remaining vertices be S'.

Observe

- 1. $S^* \subseteq S'$
- 2. For any vertex $v \in S'$, $deg_{S'}(v) \geq deg_{S'}(v^*) \geq deg_{S^*}(v^*)$. 1st inequality follows from greedy choice. 2nd inequality follows from the fact that $S^* \subset S'$ and v^* can have potentially more neighbors in S' compared to S^* .

Competitive Ratio of Greedy Peeling (contd.)

$$\begin{split} d(S') &= \frac{\frac{1}{2} \sum\limits_{v \in S'} deg_{S'}(v)}{|S'|} \\ &\geq \frac{\frac{1}{2} \sum\limits_{v \in S'} deg_{S'}(v^*)}{|S'|} \\ &= \frac{\frac{1}{2} |S'| deg_{S'}(v^*)}{|S'|} \\ &= \frac{1}{2} deg_{S'}(v^*) \\ &\geq \frac{1}{2} deg_{S^*}(v^*) \\ &\geq \frac{1}{2} d(S^*) \quad \text{(By Claim 1)} \quad \Box \end{split}$$

Summary of Greedy Peeling

Theorem

Greedy Peeling runs in linear time and it outputs a subset whose density is at least 1/2 of the density of an optimal densest subset.

Remarks:

- 1. There are examples where GP doesn't do better than 1/2. Consider a graph that is a disjoint union of a bipartite graph $K_{d,D}$ and several disjoint K_{d+2} 's, where D >> d. An optimal solution consists of $K_{d,D}$ and its density is $\approx d$. In GP, first most of the vertices of $K_{d,D}$ will be removed followed by vertices in cliques. Competitive ratio of GP $\approx \frac{d}{2}$
- An optimal densest subset can be found in polynomial time using network flow.
- 3. The problem of finding densest subset that has exactly *k* vertices, called the densest *k*-subset problem, is **NP**-Hard and can't be approximated within a constant factor.

References

- T. Lanciano, A. Fazzone, A. Miyauchi, and F. Bonchi, A Survey on the Densest Subgraph Problem and Its Variants, arXiv:2303.14467v2 [cs.DS] 18 Apr 2024.
- C. Chekuri, K. Quanrud, and M. Torres, Densest subgraph: Supermodularity, iterative peeling, 2022 ACM-SIAM Symposium on Discrete Algorithms.
- A. Goldberg, Finding a maximum density subgraph, Technical Report, University of California at Berkeley, 1984.