Sensitivity Oracle for All-pairs Mincuts

Karthik Murali

School of Computer Science, Carleton University, Ottawa, Canada

April 14, 2023

Introduction

Sensitivity Oracles

Introduction

- Most data structures are designed for static graphs.
- But, real world graphs are dynamic.
- We need data structures that can handle failures and insertions of edges.

★ Sensitivity Oracles ★

What shall we learn?

Introduction

We will learn about a sensitivity oracle for all-pairs mincuts.

Given

- \rightarrow Vertices s, t
- \rightarrow An edge *e* to be inserted/deleted

Output

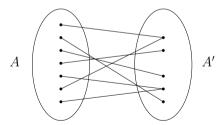
- \rightarrow Did the value of (s, t)-mincut change upon insertion/deletion?
- → If yes, report one such mincut.

What is all this? I need definitions!

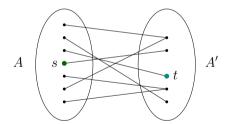
Preliminaries

(All graphs G are undirected and unweighted.)

- Cut: A partition of V(G) into non-empty sets (A, A').
- Size of a cut: No. of edges with one end in A and the other in A'.
- Global mincut: A cut of minimum size.



- (s, t)-cut: A cut with $s \in A$ and $t \in A'$.
- (s, t)-mincut: An (s, t)-cut of minimum size.

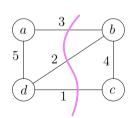


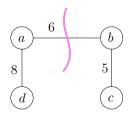
Gomory-Hu trees: a data structure for (s, t) mincuts

• **Gomory-Hu tree:** A weighted tree *T* of *G* such that:

$$\rightarrow V(T) = V(G)$$

- $\rightarrow T uv$ gives a (u, v)-mincut of G with size w(uv)
- A GHT can store (s, t)-mincuts for all pairs s, t of G. Moreover, (s, t)-mincut values can be obtained in O(1) time.





What's our goal?

Goal: Design a data structure to answer the following queries:

- FT-MINCUT($\{s, t\}, e$): Does the deletion of e decrease the value of (s, t)-mincut?
- IN-MINCUT($\{s, t\}, e$): Does the insertion of e increase the value of (s, t)-mincut?

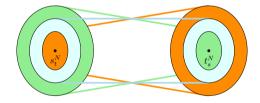
In both cases, report one such (s, t)-mincut.

Necessary and sufficient conditions for change in size of (s, t)-mincut

- Edge xy is removed: Size of an (s, t)-mincut decreases by $1 \iff xy$ is present in some (s, t)-mincut
- Edge xy is inserted: Size of an (s, t)-mincut increases by $1 \iff xy$ is present in every (s, t)-mincut

An alternate characterisation for the insertion case

• s_t^N - Nearest mincut from s to t: A set of vertices with the property that every (s,t)-mincut (A,A') with $s \in A$ has $s_t^N \subseteq A$.



• Edge xy is inserted: Size of an (s, t)-mincut increases by $1 \iff xy$ is present in every (s, t)-mincut $\iff x \in s_t^N$ and $y \in t_S^N$.

GHT as a sensitivity oracle for (s, t)-mincuts

- Store $O(n^2)$ copies of GHT, one for the insertion/deletion of each edge.
- Takes $O(n^3)$ space and O(1) query-time.

Question: Can we achieve O(1) query time using $O(n^2)$ space?

This is the goal of today's talk. So, the answer is YES!

Strip $\mathcal{D}_{s,t}$:

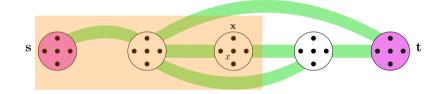
A sensitivity oracle for (s, t)-mincuts

Structure of $\mathcal{D}_{s,t}$

- This is a quotient graph of *G* with a DAG-like structure.
- Terminal nodes: Nodes containing s and t; denoted by s and t.
- All edges incident to a non-terminal node belong to side-s or side-t.

Encoding of minimum (s,t)-cuts in $\mathcal{D}_{s,t}$

• $\mathcal{R}_s(x)$ - Reachability cone of a vertex x: The set of all vertices in the direction from \mathbf{x} to \mathbf{s} .



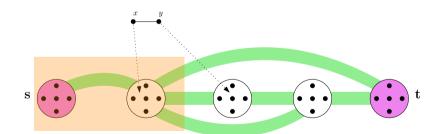
Theorem 1

A set of vertices A is an (s,t)-mincut \iff the corresponding vertices in $\mathcal{D}_{s,t}$ defines a reachability cone.

Corollaries of Theorem 1

Corollary 2

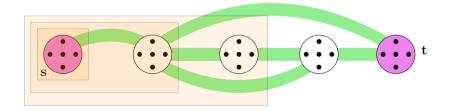
An edge xy belongs to an (s,t)-mincut if and only if it appears in $\mathcal{D}_{s,t}$.



Corollaries of Theorem 1

Corollary 3

The set of vertices mapped to **s** defines s_{t}^{N} . Similarly, the set of vertices mapped to **t** defines t_s^N .



Strip $\mathcal{D}_{s,t}$ as a sensitivity oracle

• FT-MINCUT($\{s, t\}, xy$): Check if x and y are mapped to different nodes x and y. (O(1) time)

If yes, report vertices mapped to $\mathcal{R}_s(\mathbf{x})$. (O(n) time)

• IN-MINCUT($\{s, t\}, xy$): Check if x is mapped to s and y is mapped to t. (O(1) time)

If yes, report any mincut, say vertices mapped to s. (O(n) time)

$\mathcal{D}_{s,t}$ as a sensitivity oracle for all-pairs mincut

• Store $O(n^2)$ copies of $\mathcal{D}_{s,t}$ one for the insertion/deletion of each edge.

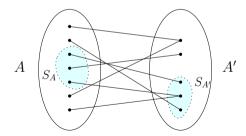
The space occupied is $O(n^3)$ and query time is O(1). This solution is no better than the trivial solution of using Gomory-Hu trees.

The connectivity carcass

A sensitivity oracle for Steiner mincuts

Steiner cuts

- Let $S \subseteq V(G)$ be a fixed set of vertices (Steiner set).
- S-cut: A cut (A, A') with $A \cap S \neq \emptyset$ and $A' \cap S \neq \emptyset$.
- S-mincut: An S-cut with minimum size.



What's our goal?

• Notation: c_S = size of S-mincut; $c_{s,t}$ = size of (s,t)-mincut

Observation 4

Let $s, t \in S$. Then $c_{s,t} \ge c_S$. Moreover, $c_{s,t} > c_S \iff s, t$ are not separated by any S-mincut.

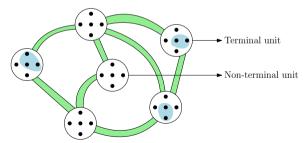
- **Objective:** Suppose that $c_{s,t}=c_S$. Design a sensitivity oracle that can answer FT-MINCUT($\{s,t\},e$) and IN-MINCUT($\{s,t\},e$) in O(1) time.
 - Also, report the corresponding *S*-mincuts in O(n) time.

The Connectivity Carcass

Connectivity Carcass: A data structure that meets the objective. It has the following components (w.r.t a fixed Steiner set *S*):

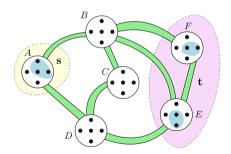
- lacksquare Flesh graph $\mathcal{F}_{\mathcal{S}}$
- ② Skeleton \mathcal{H}_S
- **1** Projection map π_S

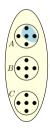
- A quotient graph of G; it generalises $\mathcal{D}_{s,t}$ to S-mincuts.
- **Units:** Vertices of \mathcal{F}_S . Vertices of G mapped to a unit are not separated by any S-mincut.
- **Terminal unit:** A unit that contains an *S*-vertex.



$\mathcal{F}_S o \mathsf{Strip}$ corresponding to an S-mincut

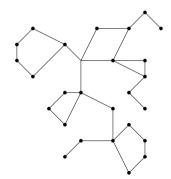
A strip for an S-mincut can be constructed from \mathcal{F}_S by contracting the Steiner units on each side of the cut into source \mathbf{s} and terminal \mathbf{t} .

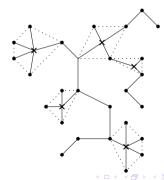




(2) The skeleton \mathcal{H}_S

- \mathcal{H}_S is a cactus graph (two cycles share ≤ 1 vertex).
- For fast computations, H_S is stored in the form of its "dual", the skeleton tree $T(\mathcal{H}_S)$.

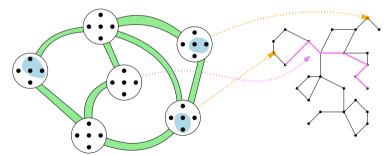




(3) The projection map π_S

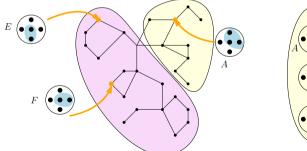
 π_S is a mapping from units of \mathcal{F}_S to paths of \mathcal{H}_S .

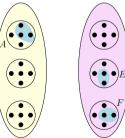
- Terminal units are mapped to nodes of \mathcal{H}_S .
- ullet Non-terminal units are mapped to *proper paths*, i.e., paths which intersect ≤ 1 edge of each cycle



Mincuts of \mathcal{H}_S store bunches of S

- **Bunch:** An equivalence of S-mincuts, where two S-mincuts are equivalent if they divide S in the same way.
- Every mincut of \mathcal{H}_S (tree edge or 2 cycle edges) corresponds to a bunch given by the Steiner units on either side of the mincut.

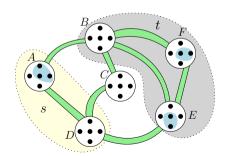


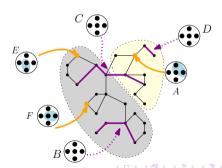


$\mathcal{F}_{S} o \mathsf{Strip}$ corresponding to a bunch

Consider any mincut of \mathcal{H}_S and the corresponding bunch \mathcal{B} . To construct strip $\mathcal{D}_{\mathcal{B}}$:

- All units which are mapped completely to one side of the cut get contracted into s
 or t.
- Non-terminal units whose paths cross the cut are retained as such.





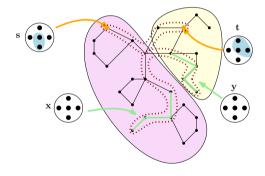
Necessary and sufficient condition for an edge to be in (s, t)-mincut

For any two vertices u, v, let $P(u, v) \to a$ path in \mathcal{H}_S with prefix $\pi_S(\mathbf{u})$ and suffix $\pi_S(\mathbf{v})$.

Theorem 5

Let $s, t \in S$ such that $c_{s,t} = c_S$. Then xy belongs to an (s,t)-mincut \iff there is a mincut of \mathcal{H}_S whose edges intersect both P(s,t) and P(x,y).

The theorem is simplified for ease of presentation, but is not precisely correct

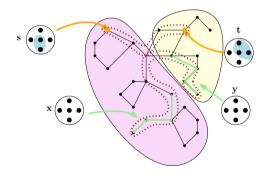


Proof of Theorem 5

Proof.

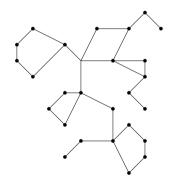
The following statements are equivalent:

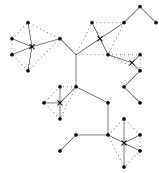
- \bigcirc xy is an edge of some (s, t)-mincut.
- \bigcirc xy is an edge of some bunch \mathcal{B} that separates s and t.
- There is an $x \rightsquigarrow y$ path in $\mathcal{D}_{\mathcal{B}}$ whose terminal nodes contain s and t.
- There is a mincut of \mathcal{H}_{ς} corresponding to \mathcal{B} whose edges intersect both P(s,t) and P(x,y)



Answering the query FT-MINCUT

- Theorem 5 can be tested on the skeleton tree $T(\mathcal{H}_S)$.
- Testing whether two paths in a tree intersect can be done in O(1) time using LCA queries.





Reporting (s, t)-mincut that contains xy

Theorem 5 gives the following method:

- Find the mincut of \mathcal{H}_S that intersects both P(s,t) and P(x,y).
- ② Construct the strip $\mathcal{D}_{\mathcal{B}}$ associated with this mincut.
- **3** Compute the reachability cone $\mathcal{R}_{s}(x)$ from the strip.

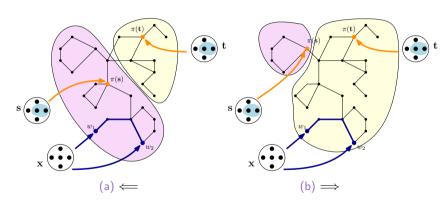
While this method requires O(m) time, it is possible to reduce it to O(n). (See [BP22] for more details.)

Necessary and sufficient conditions for a vertex to be in s_{\star}^{N}

Let
$$x \in V(G)$$
 and $P(w_1, w_2) = \pi(\mathbf{x})$.

Theorem 6

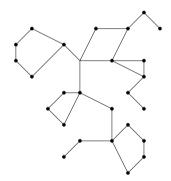
Let s. t be separated by some S-mincut. Then $x \in s_t^N$ if and only if $\pi(\mathbf{s})$ intersects all paths $P(w_1, \pi(\mathbf{t}))$ and $P(w_2, \pi(\mathbf{t}))$.



 $x \in S_t^N$ iff **x** and **s** are mapped to the same side of every mincut of \mathcal{H}_S .

Answering the query IN-MINCUT

The conditions mentioned in Theorem 6 can be tested on $T(\mathcal{H}_S)$ in O(1) time using LCA queries.



Summary

To answer the queries FT-MINCUT($\{s,t\},e$), FT-MINCUT($\{s,t\},e$) and to report the corresponding mincuts, we only need the following:

- Projection map π_S
- ② Skeleton tree $T(\mathcal{H}_S)$

Define $D(S) := (\pi_S, T(\mathcal{H}_S))$.

Hierarchical tree \mathcal{T}_G

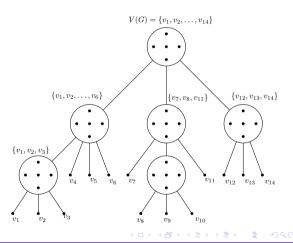
A sensitivity oracle for all-pairs mincuts

The hierarchical tree \mathcal{T}_G

- Root = V(G) and leaves are individual vertices of G.
- Let S be the set of vertices at a node $w \in \mathcal{T}_G$. The children of w are the equivalence class of nodes satisfying the relation $c_{u,v} > c_S$.

Observation 7

For any two vertices $u, v, c_{u,v} = c_S$ where S is the set of vertices at the LCA of u, v in \mathcal{T}_G .



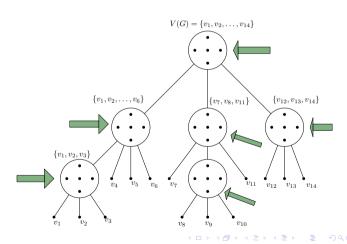
Sensitivity oracle for all-pairs mincuts

To get a sensitivity oracle for all-pairs mincut:

- Augment each internal node with D(S).
- To answer the queries

 FT-MINCUT($\{s,t\},e$) and

 IN-MINCUT($\{s,t\},e$), use D(S) at the LCA of s,t.
- Space = $O(n^2)$; Query-time = O(1)



Summary

- We got a sensitivity oracle by appending nodes of \mathcal{T}_G with D(S).
- This occupies $O(n^2)$ space with O(1) query-time. Moreover, corresponding mincuts can be returned in O(n) time.
- The paper [BP22] discusses another data structure with O(n) space and $O(\min(m, nc_{s,t}))$ query-time

Open questions

Open Problem 1

Design a sensitivity oracle for all-pairs mincuts that occupies $o(n^2)$ space and o(m) query-time.

Open Problem 2

Design a sensitivity oracle for all pairs mincuts that can tolerate the removal or insertion of upto k>1 edges.

References

[BP22] Surender Baswana and Abhyuday Pandey. Sensitivity oracles for all-pairs mincuts.

In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 581–609. SIAM, 2022.

References