Clustering to Minimize Cluster-Aware Norm Objectives

Tarek Sallam

Carleton University

(f,g)-Clustering

Input:

- X: A set of data points
- Y: A set of potential cluster centers
- k > 0: The number of clusters
- d: A metric of X and Y
- *f*: A monotone symmetric norm (inner-norm)
- *g*: A monotone symmetric norm (outer-norm)

Goal: Find

- $C \subseteq Y$: A set of cluster centers with $|C| \le k$
- $\sigma: X \to C$: Assigns points to centers

That minimizes $\Phi = g(f(\delta(c))_{c \in C})$

$$(f,g)$$
-Clustering

Well-known problems

- k-Median: $f = \mathcal{L}_1, g = \mathcal{L}_1$
- k-Centers: $f = \mathcal{L}_{\infty}, g = \mathcal{L}_{\infty}$:
- k-Means: $f = \mathcal{L}_2, g = \mathcal{L}_2$
- Min-Sum of Radii: $f = \mathcal{L}_{\infty}, \ g = \mathcal{L}_{1}$

$(\textbf{Top}_{\ell}, \mathcal{L}_1)\text{-Clustering}$

$\overline{(\mathsf{Top}_\ell,\mathcal{L}_1)} ext{-}\mathsf{Clustering}$

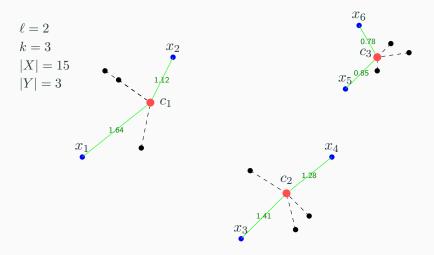
Case of (f,g)-clustering where:

- $f = \mathsf{Top}_{\ell}$: Sum of the largest ℓ distances in the cluster
- $g = \mathcal{L}_1$: Sum over all clusters

Goal becomes: Minimize the sum of the largest ℓ distances in each cluster.

Note: This problem generalizes $k\text{-Median }(\ell=|X|)$ and Min-Sum of Radii $(\ell=1).$

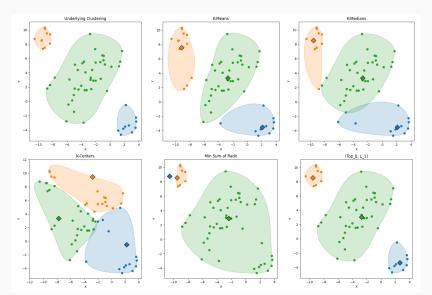
$\overline{(\mathsf{Top}_\ell,\mathcal{L}_1)}$ -Clustering



$$\Phi = 1.64 + 1.12 + 1.41 + 1.28 + 0.85 + 0.78 = 7.08$$

$(\textbf{Top}_{\ell},\mathcal{L}_1)\text{-Clustering}$

Why $(\mathrm{Top}_\ell, \mathcal{L}_1)$ objective?



$\overline{(\mathsf{Top}_\ell,\mathcal{L}_1)} ext{-}\mathsf{Clustering}$

We can map this problem to a problem introduced as Ball-k-Median.

Input:

- *X*, *Y*, *k*, *d*: As before
- $\rho \in \mathbb{R}^{>0}$: A penalty parameter

Goal: Find

- $C \subseteq Y$: A set of cluster centers
- $r: C \to \mathbb{R}$: Radius value for each center

Define:

- $d^r(x,c) = \max\{d(x,c) r(c), 0\}$
 - If point is within ball with center x, radius r, distance is 0,
 - If point is outside ball, distance is the distance to the ball

Note: $d^r(x,c)$ does *not* satisfy triangle inequality.

Goal: Find

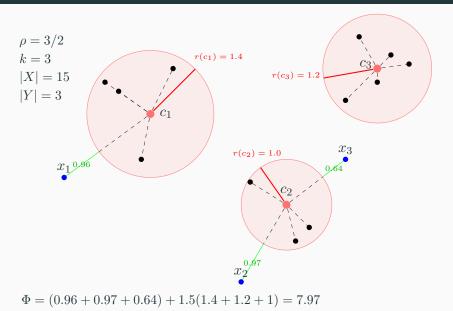
- $C \subseteq Y$: A set of cluster centers
- $r: C \to \mathbb{R}$: Radius value for each center

That minimizes:

$$\Phi = \sum_{x \in X} \min_{c \in C} d^r(x, c) + \rho \sum_{c \in C} r(c)$$

Let (C^*, r^*) be the optimal solution, with potential Φ^* .

Intuition: We pay for the distance of points outside the balls, and pay a penalty for the size of the balls.



Lemma 1

 $(\mathrm{Top}_\ell,\mathcal{L}_1)$ -Clustering can be mapped to Ball-k-Median by setting $\rho=\ell.$

Note: An important property of this problem, is that any optimal solution (C^*, r^*) will have an equivalently optimal solution where the radii $r(c^*)$ are equal to some point-to-center distance $d(x, c^*)$. for all $c^* \in C^*$.

Guessing Large Radii

- 1. Pick a constant $\varepsilon>0$, $t=\lceil\frac{3}{\varepsilon}\rceil$
- 2. For each subset $T \subseteq Y$ of size |T| = t
 - 2.1 For each $c \in C$ pick a radius r(c) as a distance to some point d(x,c)
 - 2.2 Output all possible combinations of (T,r)

Lemma 2 (Guessing Large Radii)

- The algorithm runs in $O(|Y|^{1/\varepsilon} + |X|^{1/\varepsilon})$ time.
- One choice of (T,r) will have:
 - 1. $T \subseteq C^*$ and for all $c \in T$, $r(c) = r^*(c)$
 - 2. For all $c^* \in C^* \setminus T$
 - $r^*(c^*) \le \min_{c \in T} r(c)$
 - 3. $\min_{c \in T} r(c) \le \varepsilon/(3\rho) \cdot \Phi^*$

Relaxing k

We now relax k by allowing more centers, however we introduce $\lambda \in \mathbb{R}^{>0}$ to penalize each center used. The objective becomes:

$$\Phi = \sum_{x \in X} \min_{c \in C} d^r(x, c) + \rho \sum_{c \in C} r(c) + \lambda |C|$$
$$= \sum_{x \in X} \min_{c \in C} d^r(x, c) + \sum_{c \in C} (\rho r(c) + \lambda)$$

Theorem 3

There exists an algorithm that returns a solution (C,r) with:

$$\Phi + 3\lambda |C| \le 3(\Phi^* + \lambda k)$$

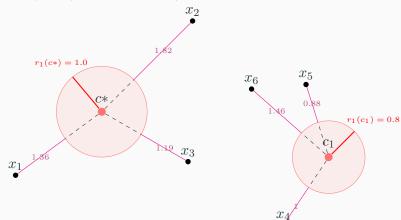
Theorem 4

We can obtain a bi-point solution $(C_1, r_1), (C_2, r_2)$ using binary search on λ , where $|C_1| \le k \le |C_2|$ with:

- 1. $T \subseteq C_1$ and $T \subseteq C_2$
- 2. $c_1 \in C_1 \setminus T \Rightarrow r_1(c_1) \leq \varepsilon/(3\rho) \cdot \Phi^*$
- 3. $c_2 \in C_2 \setminus T \Rightarrow r_2(c_2) \leq \varepsilon/(3\rho) \cdot \Phi^*$
- 4. $a\Phi_1 + b\Phi_2 \leq (3+\varepsilon)\Phi^*$, where $a = \frac{|C_2| k}{|C_2| |C_1|}$ and $b = \frac{k |C_1|}{|C_2| |C_1|}$

Bi-Point Solution

Solution (C_1, r_1) , for $k = 3, \ \rho = 3/2$

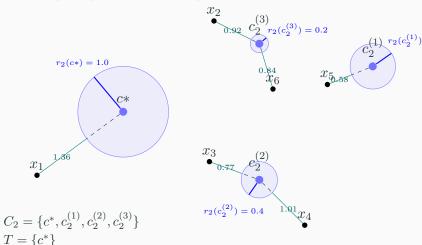


$$C_1 = \{c^*, c_1\}$$

 $T = \{c^*\}$
 $\Phi_1 = (1.36 + 1.82 + 1.19 + 1 + 0.88 + 1.46) + 3/2(1 + 0.8) = 10.41$

Bi-Point Solution

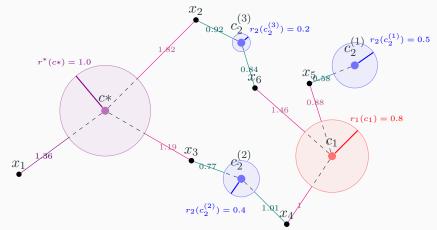
Solution (C_2, r_2) , for $k = 3, \ \rho = 3/2$



 $\Phi_1 = (1.36 + 0.92 + 0.77 + 1.01 + 0.58 + 0.84)$ +3/2(1 + 0.5 + 0.4 + 0.2) = 8.63

Bi-Point Solution

Both solutions together. $T \subseteq C_1$ and $T \subseteq C_2$



Bi-Point Rounding

• If a > 1/4

$$a\Phi_1 + b\Phi_2 \le (3+\varepsilon)\Phi *$$

 $\Rightarrow \Phi_1 \le 4(3+\varepsilon)\Phi *$

Then we have a $4(3+\varepsilon)$ -approximation using C_1

• If $\Phi_1 \leq \Phi_2$

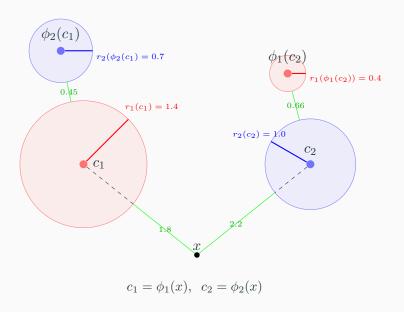
$$\Phi_1 = (a+b)\Phi_1 \le a\Phi_1 + b\Phi_2 \le (3+\varepsilon)\Phi *$$

Then we have a $(3+\varepsilon)$ -approximation using C_1

Bi-Point Rounding

- Now we assume $a \leq 1/4$ and $\Phi_2 \leq \Phi_1$
- Let $\delta(c_1, c_2) = \max\{d(c_1, c_2) r_1(c_1) r_2(c_2), 0\}$ be the distance between balls $c_1 \in C_1$ and $c_2 \in C_2$.
- For center $c_2 \in C_2$, let $\phi_1(c_2) = \underset{c_1 \in C_1}{\operatorname{arg \, min}} \delta(c_1, c_2)$
- Similarly, for center $c_1 \in C_1$, let $\phi_2(c_1) = \mathop{\arg\min}_{c_2 \in C_2} \delta(c_1, c_2)$
- For a point $x \in X$ let $\phi_1(x) = \underset{c_1 \in C_1}{\arg \min} \ d^{r_1}(x, c_1)$
- Similarly, for point $x \in X$, let $\phi_2(x) = \operatorname*{arg\,min}_{c_2 \in C_2} d^{r_2}(x,c_2)$

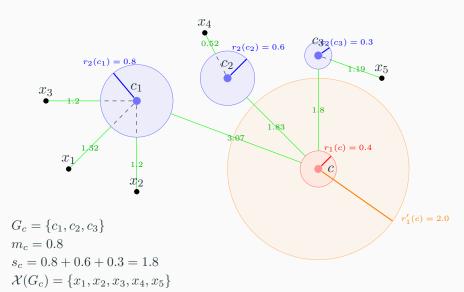
$\overline{(\mathsf{Top}_\ell,\mathcal{L}_1)} ext{-}\mathsf{Clust}$ ering



Bi-Point Rounding

- We match each center $c_2 \in C_2$ with $\phi_1(c_2)$. Let $c_1 \in C_1$, denote the subset of centers of C_2 that are closest to c_1 : $G_{c_1} = \{c_2 \in C_2 \mid \phi_1(c_2) = c_1\}$
- \bullet The largest radius that is closest to c_1 is: $m_{c_1} = \max_{c_2 \in G_{c_1}} r_2(c_2)$
- \bullet The sum of all radii closest to c_1 is: $s_{c_1} = \sum_{c_2 \in G_{c_1}} r_2(c_2)$
- Denote the set of points $x \in X$ that are closest to any set of centers $C_2' \subseteq C_2$ as: $\mathcal{X}(C_2') = \{x \in X \mid \phi_2(x) \in C_2'\}$
- Let $r_1'(c_1) = r_1(c_1) + 2m_{c_1}$ be the inflated radius of c_1

$\overline{(\mathsf{Top}_\ell,\mathcal{L}_1)} ext{-}\mathsf{Clust}\mathsf{ering}^{\mathsf{l}}$



Lemma 5 (Generalized triangle inequality)

Given a point
$$x \in X$$
, with $c_1 = \phi_1(x), \ c_2 = \phi_2(x), \ c_1' = \phi_1(c_2),$
$$d^{r_1'}(x,c_1') \le 2d^{r_2}(x,c_2) + d^{r_1}(x,c_1)$$

Bi-Point Rounding

- For all c_1 in C_1 we have two choices, we either put c_1 into our solution or we put all of G_{c_1} into our solution
 - 1. If we put G_{c_1} into our solution, we contribute a cost of all the $c_2 \in G_{c_1}$ with their respective radii r_{c_2}
 - 2. If we put c_1 into our solution, we enlarge the radii to $r_1(c_1) + m_{c_1}$.

Linear Program

(relaxed to allow fractional variables):

$$\max \sum_{c_1 \in C_1} u_{c_1} \left(r_1(c_1) \rho + s_{c_1} \rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left[d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x)) \right] \right)$$

s.t.
$$\sum_{c_1 \in C_1} u_{c_1}(|G_{c_1}| - 1) \le k - |C_1|$$
$$u_{c_1} \in [0, 1], \ \forall c_1 \in C_1$$

Fractional Knapsack LP

- Observe that this is the *Fractional Knapsack* problem.
- If we put an item in our bag we add G_{c_1} to our solution. If we don't we add c_1 to our solution.
- The weight of an item u_{c_1} is $(|G_{c_1}-1)$
- lacktriangleright The value of an item is the cost difference between adding G_{c_1} and adding c_1
- Our bag can hold weight at most $k |C_1|$.
- Fractional Knapsack: We want to maximize sum of value while keeping the weight of our bag under the maximum (we can take fractional items)

Linear Program

- There always exists an optimal solution to Fractional Knapsack where at most one variable is fractional, and the rest are integral
- We can find this solution in polynomial time
- If we solve this LP and all variables are integral, we are done
- Suppose there exists one variable: $u_{\tilde{c}_1}$ that is fractional.
- We include the corresponding \tilde{c}_1 in our solution with radius $r'_1(\tilde{c}_1)$ and some centers from $G_{\tilde{c}_1}\setminus (T\cap \{\tilde{c}_1\})$

Bi-Point Solution

- For all $c_1 \in C_1 \setminus \{\tilde{c_1}\}$:
 - 1. If $u_{c_1}=1$ we include all centers $c_2 \in G_{c_1}$ with corresponding radius $r(c_2) \leftarrow r_2(c_2)$
 - 2. If $u_{c_1}=0$ we include center c_1 with radius $r(c_1) \leftarrow r_1'(c_1) = r_1(c_1) + 2m_{c_1}$
- Add \tilde{c}_1 with radius $r(\tilde{c}_1) \leftarrow r_1'(\tilde{c}_1) = r_1(\tilde{c}_1) + 2m_{\tilde{c}_1}$, with $m_{\tilde{c}_1} = \max_{c_2 \in G_{\tilde{c}_1} \setminus (T \cap \{\tilde{c}_1\})} r_2(c_2)$
- Add $(\lceil u_{\tilde{c}_1} | G_{\tilde{c}_1} | \rceil 2)$ centers from $G_{\tilde{c}_1} \setminus (T \cap \{\tilde{c}_1\})$ at random with radius $r(c_2) \leftarrow r_2(c_2)$ for chosen c_2
- Let this constructed solution be (C, r)

Theorem 6 (Main Claim)

$$\Phi \le (13.5 + 7.5\varepsilon)\Phi^*$$

References

- [1] Martin G. Herold, Evangelos Kipouridis, and Joachim Spoerhase. *Clustering to Minimize Cluster-Aware Norm Objectives*. 2024. arXiv: 2410.24104 [cs.DS]. URL: https://arxiv.org/abs/2410.24104.
- [2] M Charikar et al. "A constant-factor approximation algorithm for the *k*-median problem". In: *Proceedings of 31st Annual ACM Symposium on Theory of Computing* (Jan. 1999), pp. 1–10.
- [3] Moses Charikar and Rina Panigrahy. "Clustering to minimize the sum of cluster diameters". In: *Symposium on the Theory of Computing*. 2001. URL:

https://api.semanticscholar.org/CorpusID:10974136.

- [4] Shi Li and Ola Svensson. "Approximating k-Median via Pseudo-Approximation". In: CoRR abs/1211.0243 (2012). arXiv: 1211.0243. URL: http://arxiv.org/abs/1211.0243.
- [5] Sara Ahmadian and Chaitanya Swamy. "Approximation Algorithms for Clustering Problems with Lower Bounds and Outliers". In: CoRR abs/1608.01700 (2016). arXiv: 1608.01700. URL: http://arxiv.org/abs/1608.01700.

Extra Proofs and algorithms used

Proof of Lemma 2

- 1. We look through all subsets of size t with all possible radius combinations.
- 2. Same reasoning as 1.

3.

$$\rho \cdot \min_{c \in T} r(c) \le \rho \cdot \frac{\sum_{c \in T} r(c)}{|T|}$$

$$\le \frac{\rho \cdot \sum_{c^* \in C^*} r^*(c^*)}{\lceil 3/\varepsilon \rceil}$$

$$\le \varepsilon/3 \cdot \Phi^*$$

The algorithm for relaxed ball-k-median

LP Relaxation

Let $R_c = \{d(r,c)\}$: The set of possible radii for center c.

Our LP relaxation becomes:

$$\min \sum_{c \in Y} \sum_{x \in X} \sum_{r \in R_c} d^r(x, c) v_{c,r,x} + \sum_{c \in Y \setminus T} \sum_{r \in R_c} (\rho r + \lambda) u_{c,r}$$

$$\begin{aligned} \text{s.t.} \quad & \sum_{c \in Y} \sum_{r \in R_c} v_{c,r,x} \geq 1 & \forall x \in X \\ & v_{c,r,x} \leq u_{c,r} & \forall x \in X, c \in Y, r \in R_c \\ & u_{c,r}, v_{c,r,x} \geq 0 & \forall x \in X, c \in Y, r \in R_c \end{aligned}$$

 $v_{c,r,x}\colon$ Fraction of point x assigned to center c with radius r. $u_{c,r}\colon$ Fraction of center c opened with radius r

Dual LP

Let $R_c = \{d(r,c)\}$: The set of possible radii for center c. Our LP relaxation becomes:

$$\begin{aligned} & \max & & \sum_{x \in X} \alpha_x \\ & \text{s.t.} & & \alpha_x - \beta_{c,r,x} \leq d^r(x,c) & & \forall x \in X, c \in Y, r \in R_c \\ & & \sum_{x \in X} \beta_{c,r,x} \leq \rho r + \lambda & & \forall c \in Y \setminus T, r \in R_c \\ & & \sum_{x \in X} \beta_{c,r,x} \leq 0 & & \forall c \in T, r \in R_c \end{aligned}$$

Algorithm Initialization

- 1. Let T, r' be the guessed centers and radii
- 2. $\hat{C} \leftarrow \emptyset$
- 3. $\hat{r}(c) \leftarrow 0$ for all $c \in Y \setminus T$
- 4. $\alpha_x \leftarrow 0$ for all $x \in X$
- 5. $\beta_{c,r,x} \leftarrow 0$ for all $x \in X, c \in Y, r \in R_c$

Algorithm Ascent Phase

- 1. Increase α_x uniformly for all $x \in X$
- 2. While some α_x is still increasing:
- 2.1 If $\alpha_x \beta_{c,r,x} = d^r(x,c)$ for some $c \in Y$, $x \in X, r \in R_c$:
 - If $c \in T$: Stop increasing α_x
 - If $c \in Y \setminus T$: Increase $\beta_{c,r,c}$ at the same rate as α_x
- 2.2 If $\sum_{x \in X} \beta_{c,r,x} = \rho r + \lambda$ for some $c \in Y \setminus T, r \in R_c$:
 - $\hat{r}(c) \leftarrow \max\{\hat{r}(c), r\}$
 - $\hat{C} \leftarrow \hat{C} \cup \{c\}$
 - Stop increasing α_x for all x where $\beta_{c,r,x}>0$
 - Stop increasing $\beta_{c,r,x}$ for all $x \in X$

Algorithm Pruning Phase

- 1. $r(c) \leftarrow r'(c)$ for all $c \in T$
- 2. $C \leftarrow T$
- 3. While $\hat{C} \neq \emptyset$:
- 3.1 Pick $c = \arg \max \hat{r}(\hat{c})$
- 3.2 $C \leftarrow C \cup \{\hat{c}\}\$
- 3.3 $r(c) \leftarrow 3\hat{r}(c)$
- 3.4 $\hat{C} \leftarrow \hat{C} \setminus \{\hat{c} \in \hat{C} \mid \beta_{c,\hat{r}(c),x}, \beta_{\hat{c},\hat{r}(\hat{c}),x} \geq 0 \text{ for some } x \in X\}$
- 4. return (C, r)

The analysis for relaxed ball-k-median algorithm

Contributing vs Non-Contributing points

- A point $x \in X$ is **contributing** if for some $c \in C$: $\beta_{c,\hat{r}(c),x} > 0$
- Otherwise, *x* is **non-contributing**.
- We denote X_c as the set of points contributing to center c. $X_c = \{x \in X \mid \beta_{c,\hat{r}(c),x} > 0\}$

Lemma 7 (Contributing Points)

$$\sum_{c \in C} \sum_{x \in X_c} \alpha_x = \sum_{c \in C \backslash T} \sum_{x \in X_c} d^{\hat{r}}(x, c) + \rho \sum_{c \in C \backslash T} \hat{r}(c) + \lambda |C \backslash T|$$

Proof of Lemma 7

• For any c added to \hat{C} in the ascent phase:

$$\sum_{x \in X_c} \beta_{c,\hat{r}(c),x} = \rho \hat{r}(c) + \lambda$$

• For any contributing point $x \in X_c$:

$$\alpha_x - \beta_{c,\hat{r}(c),x} = d^{\hat{r}}(p,c)$$

• $X_{c'} = \emptyset$, for all $c' \in T$

$$\sum_{c \in C} \sum_{x \in X_c} \alpha_x = \sum_{c \in C \setminus T} \left(\sum_{x \in X_c} (\alpha_x - \beta_{c, \hat{r}(c), x}) + \sum_{x \in X_c} \beta_{c, \hat{r}(c), x} \right)$$

$$= \sum_{c \in C \setminus T} \left(\sum_{x \in X_c} d^{\hat{r}}(x, c) + \rho \hat{r}(c) + \lambda \right)$$

$$= \sum_{c \in C \setminus T} \sum_{x \in X_c} d^{\hat{r}}(x, c) + \rho \sum_{c \in C \setminus T} \hat{r}(c) + \lambda |C \setminus T|$$

Lemma 8 (Non-Contributing Points)

For all non-contributing points $x \in X \setminus (\bigcup_{c \in C} X_c)$, there exists a center $c \in C$ such that:

$$d^r(x,c) \le 3\alpha_x$$

- Let \tilde{c} and \tilde{r} be the center and radius that caused α_x to stop increasing in the ascent phase.
- If $\tilde{c} \in C$, then:

$$d^r(x,\tilde{c}) \le d^{\hat{r}}(x,\tilde{c}) \le d^{\tilde{r}}(x,\tilde{c}) = \alpha_x - \beta_{\tilde{c},\tilde{r},x} \le \alpha_x \le 3\alpha_x$$

- Suppose $\tilde{c} \notin C$
- There exists some $c \in C$ and $x' \in X$ such that x' contributed to both \tilde{c} and c in the ascent phase

$$\implies \hat{r}(c) \ge \hat{r}(\tilde{c})$$

- Since x' contributes to \tilde{c} , the $\alpha_{x'}$ stopped increasing no later then when \tilde{c} was added to \hat{C} .
- Since x does not contribute to \tilde{c} , α_x could have continued to increase after \tilde{c} was added to \hat{C}
- So, $\alpha_x \ge \alpha_{x'}$

$$\begin{split} d^{r}(x,c) &= d^{3\hat{r}}(x,c) \\ &= \max\{d(x,c) - 3\hat{r}(c),0\} \\ &\leq \max\Big\{d(c,x') + d(x',\tilde{c}) + d(\tilde{c},x) - 3\hat{r}(c),0\Big\} \\ &\leq \max\{d(c,x') - \hat{r}(c),0\} + \max\{d(x',\tilde{c}) - \hat{r}(c),0\} \\ &+ \max\{d(\tilde{c},x) - \hat{r}(c),0\}. \\ &\leq \max\{d(c,x') - \hat{r}(c),0\} + \max\{d(x',\tilde{c}) - \hat{r}(\tilde{c}),0\} \\ &+ \max\{d(\tilde{c},x) - \hat{r}(\tilde{c}),0\} \\ &= d^{\hat{r}}(x',c) + d^{\hat{r}}(x',\tilde{c}) + d^{\hat{r}}(x,\tilde{c}) \\ &\leq \alpha_{x} + 2\alpha_{x'} \\ &\leq 3\alpha_{x} \end{split}$$

Proof of Theorem 3

Define
$$X_C = \bigcup_{c \in C} X_c$$

$$\Phi + 3\lambda |C \setminus T| - \sum_{c \in T} \rho r(c)$$

$$\leq \sum_{x \in X} \min_{c \in C} d^r(x, c) + \sum_{c \in C \setminus T} \rho r(c) + 3\lambda |C \setminus T|$$

$$\leq \sum_{c \in C} \sum_{x \in X_c} d^r(x, c) + \sum_{x \in X \setminus X_C} \min_{c \in C} d^r(x, c)$$

$$+ \sum_{c \in C \setminus T} \rho r(c) + 3\lambda |C \setminus T|$$

Proof of Theorem 3

$$\leq \sum_{c \in C} \sum_{x \in X_c} d^r(x, c) + \sum_{x \in X \backslash X_C} \min_{c \in C} d^r(x, c)$$

$$+ \sum_{c \in C \backslash T} 3\hat{r}(c)\rho + 3\lambda |C \backslash T|$$

$$\leq \sum_{c \in C} \sum_{x \in X_c} \alpha_x + \sum_{x \in X \backslash X_C} \min_{c \in c} d^r(x, c)$$

$$\leq 3 \sum_{x \in X} \alpha_x$$

$$\leq 3 \sum_{x \in X} \min_{c^* \in C^*} d^{r^*}(x, c^*) + 3 \sum_{c^* \in C^* \backslash T} (\rho r^*(c^*) + \lambda)$$

Proof of Theorem 3

$$\begin{split} \Phi + 3\lambda |C \setminus T| - \sum_{c \in T} \rho r(c) + \sum_{c \in T} (\rho r(c) + 3\lambda) \\ &\leq 3 \sum_{x \in X} \min_{c^* \in C_*} d^{r^*}(x, c^*) + 3 \sum_{c^* \in C^* \setminus T} (\rho r^*(c^*) + \lambda) + 3 \sum_{c \in T} (\rho r(c) + \lambda) \\ \Rightarrow \Phi + 3\lambda |C| \leq 3\Phi^* + 3\lambda k \end{split}$$

The binary search algorithm on λ

Binary search on λ

- 1. $\lambda_1 \leftarrow |X| \cdot d_{max}$
- 2. Consider the solution that would be returned by algorithm, (C_1^\prime, r_1^\prime)
- 3. Now by removing all centers $c \in C$ where $c \notin T$, we increase the cost by at most $|X| \cdot d_{max}$
- 4. We decrease cost by at least $|X| \cdot d_{max}$
- 5. This gives us a new solution (C_1, r_1) with $|C_1| \leq k$
- 6. And $\Phi_1 + 3\lambda_1 |C_1| \le \Phi_1' + 3\lambda_1 |C_1'| \le 3(\Phi^* + \lambda_1 k)$

Binary search on λ

- 1. $\lambda_2 \leftarrow 0$
- 2. Consider the solution that would be returned by algorithm, (C_2^\prime, r_2^\prime)
- 3. We add centers $c \in Y$ where $c \notin C_2'$ with radius r(c) = 0 until we have at least k centers
- 4. This gives us a new solution (C_2, r_2) with $|C_2| \ge k$
- 5. We cannot increase the cost $\Phi_1=\Phi_1'$, since $C_2\supseteq C_2'$ and r(c)=0 for all new centers.
- 6. So, $\Phi_2 + 3\lambda_2 |C_2| \le \Phi_2' + 3\lambda_2 |C_2'| \le 3(\Phi^* + \lambda_2 k)$

Binary search on λ

- Notice $|C_1| \cap |C_2| \subseteq T$
- If $c_2 \in C_2$ but $c_2 \notin C_1$, then $r_2(c_2) = 0$ $\Rightarrow \rho r_2(c_2) \leq \varepsilon \Phi^*$
- If $c_1 \in C_1$ but $c_1 \notin C_2$, then $c_1 \in T$ $\Rightarrow \rho r_1(c_1) \leq \varepsilon \Phi^*$
- Also note that increasing λ decreases |C|, since we larger λ penalizes opening centers more.

Binary search on λ

Since we have a monotone relationship between λ and |C|, and our two constructed endpoint solutions have $|C_1| \leq k$ and $|C_2| \geq k$, with potential preserved, we can perform binary search to find solutions that are close to k.

- 1. Perform binary search with $\lambda \in [0, |X| \cdot d_{max}]$.
- 2. We find the midpoint of the interval $\lambda_m = (\lambda_1 + \lambda_2)/2$
- 3. With the solution (C'_m, r'_m) returned by the algorithm:
- 4. If $|C_m'| \ge k$, set $\lambda_2 \leftarrow \lambda_m$ and $(C_2, r_2) \leftarrow (C_m', r_m')$
- 5. If $|C'_m| < k$, set $\lambda_1 \leftarrow \lambda_m$ and $(C_1, r_1) \leftarrow (C'_m, r'_m)$
- 6. Repeat until $|\lambda_1 \lambda_2| \leq (\varepsilon d_{min})/3|Y|$

Proof of Theorem 4

- 1. We fix T for any solution in the interval $(0,|X|\cdot d_{max})$ and we have shown that T is a subset for both endpoint solutions.
- 2. For any solution in the interval $(0,|X|\cdot d_{max})$,

$$3r(c) = \hat{r}(c) \le \min_{c' \in T} r'(c') \le \varepsilon/(3\rho)\Phi^*$$

$$\Rightarrow r(c) \le \varepsilon/\rho\Phi^*$$

3. We have also shown this for both endpoint solutions already

Proof of Theorem 4.4

Observe a+b=1 and $a|C_1|+b|C_2|=k$.

$$\begin{split} a\Phi_1 + b\Phi_2 &= a(\Phi_1 + 3\lambda_1|C_1|) + b(\Phi_2 + 3\lambda_2|C_2|) - 3(a\lambda_1|C_1| + b\lambda_2|C_2|) \\ &\leq 3a(\Phi^* + \lambda_1k) + 3b(\Phi^* + \lambda_2k) - 3(a\lambda_1|C_1| + b\lambda_2|C_2|) \\ &= 3(a+b)\Phi^* + 3a\lambda_1k + 3b\lambda_2k - 3(a\lambda_1|C_1| + b\lambda_2|C_2|) \\ &= 3\Phi^* + 3(a+b)\lambda_1k + 3b(\lambda_2 - \lambda_1)k - 3(a\lambda_1|C_1| + b\lambda_2|C_2|) \\ &= 3\Phi^* + 3\lambda_1k + 3b(\lambda_2 - \lambda_1)k - 3(a\lambda_1|C_1| + b\lambda_2|C_2|) \\ &= 3\Phi^* + 3\lambda_1(a|C_1| + b|C_2|) + 3b(\lambda_2 - \lambda_1)k - 3(a\lambda_1|C_1| + b\lambda_2|C_2|) \\ &= 3\Phi^* + 3b\lambda_1|C_2| + 3b(\lambda_2 - \lambda_1)k - 3b\lambda_2|C_2| \\ &= 3\Phi^* + 3b(\lambda_2 - \lambda_1)k - 3b|C_2|(\lambda_2 - \lambda_1) \\ &= 3\Phi^* + (\lambda_2 - \lambda_1)(3bk - 3b|C_2|) \\ &\leq 3\Phi^* + |\lambda_1 - \lambda_2|3b|C_2| \text{ because } 0 \leq 3bk \leq 3b|C_2| \\ &\leq 3\Phi^* + \varepsilon d_{min}b|C_2|/|Y| \\ &\leq 3\Phi^* + \varepsilon r(c)b|C_2|/|Y| \text{ for some } c \in T \\ &\leq 3\Phi^* + \varepsilon r(c) \since b|C_2| \leq k \leq |Y| \\ &\leq (3+\varepsilon)\Phi^* \end{split}$$

$$\begin{split} d^{r'_1}(x,c'_1) &= \max\{d(c'_1,x) - r'_1(c'_1),0\} \\ &= \max\{d(c'_1,x) - r_1(c'_1) - 2m_{c'_1},0\} \\ &\leq \max\{d(c'_1,x) - r_1(c'_1) - 2r_2(c_2),0\} \\ &\leq \max\{d(x,c_2) + d(c_2,c'_1) - r_1(c'_1) - 2r_2(c_2),0\} \\ &\leq \max\{d(x,c_2) - r_2(c_2),0\} + \max\{d(c_2,c'_1) - r_1(c'_1) - r_2(c_2),0\} \\ &= d^{r_2}(x,c_2) + \delta(c'_1,c_2) \\ &\leq d^{r_2}(x,c_2) + \delta(c_1,c_2) \\ &= d^{r_2}(x,c_2) + \max\{d(c_1,c_2) - r_1(c_1) - r_2(c_2),0\} \\ &\leq d^{r_2}(x,c_2) + \max\{d(c_1,x) + d(x,c_2) - r_1(c_1) - r_2(c_2),0\} \\ &\leq d^{r_2}(x,c_2) + \max\{d(x,c_2) - r_2(x_2),0\} + \max\{d(c_1,x) - r_1(x_1),0\} \\ &\leq d^{r_2}(x,c_2) + d^{r_1}(x,c_1) \end{split}$$

Approximating Ball-k-Median

- For all c_1 in C_1 we have two choices, we either put c_1 into our solution or we put all of G_{c_1} into our solution. Then our
- 1. If we put G_{c_1} into our solution, we contribute a cost of all the $c_2\in G_{c_1}$ with their respective radii r_{c_2}
- 2. If we put c_1 into our solution, we enlarge the radii to $r_1(c_1)+2m_{c_1}$.
- If we choose all centers in G_{c_1} , $x\in\mathcal{X}(G_{c_1})$ is either closest to some $c_2\in G_{c_1}$ or some other $c_1'\in C_1$
- So the cost of choosing this is at most:

$$\sum_{x \in \mathcal{X}(G_{c_1})} \min_{c_2 \in G_{c_1}} d^{r_2}(x, c_2) + \sum_{c_2 \in G_{c_1}} \rho r_2(c_2)$$

- If we choose c_1 with radius $r_1'(c_1)=r_1(c_1)+2m_{c_1}$
- Our cost becomes: $\sum_{x \in X | \phi_1(x) = c_1} d^{r'_1}(x, c_1) + \rho(r_1(c_1) + 2m_{c_1})$

- Notice that $(r_1(c_1) + 2m_{c_1})\rho \le (r_1(c_1) + 2s_{c_1})\rho$
- So we save at most $(r_1(c_1) + s_{c_1})\rho$ from the radii cost, by choosing G_{c_1} for our solution
- Notice that $d^{r_1'}(x,c) \leq d^{r_1'}(x,c_1)$ with $c=\mathop{\arg\min}_{c\in C_1} d^{r_1'}(x,c)$ and by Lemma 6, $d^{r_1'}(x,c_1) \leq 2d^{r_2}(x,c_2) + d^{r_1}(x,c)$, where $c_2 \in G_{c_1}$, for any $x \in \mathcal{X}(G_{c_1})$
- So we save at most $d^{r_2}(x,c_2)+d^{r_1}(x,\phi(x))$ for each point $x\in\mathcal{X}(G_{c_1})$ from the point cost, by choosing G_{c_1} for our solution.

- Naturally we want to save as much cost as possible.
- Let $u_{c_1} = 1$ if we add G_{c_1} to the solution and $u_{c_1} = 0$ if we add c_1 to the solution.
- Then we save at most

$$\sum_{c_1 \in C_1} u_{c_1} \Big(\big(r_1(c_1) + s_{c_1} \big) \rho + \sum_{x \in \mathcal{X}(G_{c_1})} \big[d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x)) \big] \Big)$$

- \bullet However, we can't select every G_{c_1} because we must keep the size of our center set $\leq k$
- Some u_x will be 0. So we have an LP

Knapsack LP

- We know the objective, but what are the constraints?
- The number of centers we have must be $\leq k$ so:

$$\sum_{c_1 \in C_1} u_{c_1} \cdot |G_{c_1}| + (1 - u_{c_1}) \cdot 1 \le k$$

$$\Rightarrow \sum_{c_1 \in C_1} (u_{c_1}|G_{c_1}| - u_{c_1}) + \sum_{c_1 \in C_1} 1 \le k$$

$$\Rightarrow \sum_{c_1 \in C_1} u_{c_1} (|G_{c_1}| - 1) \le k - |C_1|$$

Approximating Ball-*k***-Median**

Lemma 9 (Center feasibility)

$$|C| \le k$$

- We add at most $u_{\tilde{c}_1}|G_{\tilde{c}_1}|-1$ centers from $G_{\tilde{c}_1}$ and we add \tilde{c}_1 itself, which totals to $u_{\tilde{c}_1}|G_{\tilde{c}_1}|$ centers
- For $c_1 \neq \tilde{c}_1$ we add 1 center if $u_{c_1}=0$ and we add $|G_{c_1}|$ if $u_{c_1}=1$, which totals to

$$\sum_{c_1 \in C_1 \setminus \{\tilde{c}_1\}} u_{c_1}(|G_{c_1}|) + (1 - u_{c_1}) \cdot 1$$

$$= |C_1| - 1 + \sum_{c_1 \in C_1 \setminus \{\tilde{c}_1\}} u_{c_1}(|G_{c_1}| - 1)$$

Proof of Lemma 9

By our LP constraint:

$$\sum_{c_1 \in C_1} u_{c_1}(|G_{c_1}| - 1) + |C_1| \le k$$

$$\Rightarrow u_{\tilde{c}_1}(|G_{\tilde{c}_1}| - 1) + \sum_{c_1 \in C_1 \setminus \{\tilde{c}_1\}} u_{c_1}(|G_{c_1}| - 1) + |C_1| \le k$$

$$\Rightarrow u_{\tilde{c}_1}|G_{\tilde{c}_1}| + \sum_{c_1 \in C_1 \setminus \{\tilde{c}_1\}} u_{c_1}(|G_{c_1}| - 1) + |C_1| - 1 \le k - 1 + u_{\tilde{c}_1}$$

$$\Rightarrow |C| \le k - 1 + u_{\tilde{c}_1} \le k$$

Lemma 10 (Portion of centers added)

Let $G'_{\tilde{c}_1}=G_{\tilde{c}_1}\setminus (T\cap \{\tilde{c}_1\})$ and let the ratio of centers added to our solution from $G_{\tilde{c}_1}$ be $p_{\tilde{c}_1}$. That is $p_{\tilde{c}_1}=\frac{\lceil u_{\tilde{c}_1}\mid G'_{\tilde{c}_1}\mid \rceil-2}{\lvert G'_{\tilde{c}_1}\rvert}$ Then

$$\frac{(1-p_{\tilde{c}_1})}{(1-u_{\tilde{c}_1})} \le 3$$

Proof of Lemma 10

• If $u_{\tilde{c}_1} \leq 2/3$ then $1 - u_{\tilde{c}_1} \geq 1/3$, so we have:

$$\frac{(1 - p_{\tilde{c}_1})}{(1 - u_{\tilde{c}_1})} \le (1 - p_{\tilde{c}_1}) \cdot 3 \le 3$$

• We now assume $u_{\tilde{c}_1} > 2/3$

- Let ψ be the integer such that $\frac{\psi}{\psi+1} < u_{\tilde{c}_1} \leq \frac{\psi+1}{\psi+2}$
- Such a ψ exists because
- 1. $u_{\tilde{c}_1} \in (0,1)$
- 2. $0 \le \frac{\psi}{\psi+1}$ for $\psi \in \mathbb{Z}^{\geqslant 0}$
- 3. $\lim_{\psi \to +\infty} \frac{\psi}{\psi+1} = 1$
- Then we have: $\frac{1}{\psi+1}>1-u_{\tilde{c}_1}\geq\frac{1}{\psi+2}$

- The capacity constraint in an optimal solution of Fractional Knapsack is binding
- \bullet So we have that $\sum_{c_1 \in C_1} u_{c_1}(|G_{c_1}|-1) = k-|X_1|$
- $k-|X_1|$ is an integer
- $u_{c_1}(|G_{c_1}|-1)=(|G_{c_1}|-1)$ or $u_{c_1}(|G_{c_1}|-1)=0$, for all $c_1\in C_1\setminus\{\tilde{c}_1\}$. In either case $u_{c_1}(|G_{c_1}|-1)$ is an integer.
- Since the sum all integers and $u_{\tilde{c_1}}(|G_{\tilde{c}_1}|-1)$ equals an integer, $u_{\tilde{c_1}}(|G_{\tilde{c}_1}|-1)$ must be an integer.

$$1 - u_{\tilde{c}_1} = \frac{|G_{\tilde{c}_1}| - 1 - u_{\tilde{c}_1}(|G_{\tilde{c}_1}| - 1)}{|G_{\tilde{c}_1}| - 1} < \frac{1}{\psi + 1}$$

- So: $1 \leq |G_{\tilde{c}_1}| 1 u_{\tilde{c}_1}(|G_{\tilde{c}_1}| 1)$ is an integer
- And: $|G_{\tilde{c}_1}|-1$ is an integer
- So $|G_{\tilde{c}_1}| 1 > \psi + 1 \Rightarrow |G'_{\tilde{c}_1}| \ge \psi + 2$

$$\frac{|G'_{\tilde{c}_1}| - (\lceil u_{\tilde{c}_1} | G'_{\tilde{c}_1} | \rceil - 2)}{|G'_{\tilde{c}_1}|(1 - u_{\tilde{c}_1})} \le \frac{1 - u_{\tilde{c}_1} + 2/|G'_{\tilde{c}_1}|}{1 - u_{\tilde{c}_1}}$$

$$= 1 + \frac{2}{|G'_{\tilde{c}_1}|(1 - u_{\tilde{c}_1})}$$

$$\le 1 + \frac{2(\psi + 2)}{|G'_{\tilde{c}_1}|}$$

$$\le 1 + \frac{2(\psi + 2)}{\psi + 2}$$

$$\le 3$$

Lemma 11 (LP Feasible Solution Bound)

The solution $u_{c_1} = b$ for all $c_1 \in C_1$ is a feasible solution to the LP and has value equal to:

$$b \sum_{c_1 \in C_1} \left(r_1(c_1)\rho + s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left[d^{r_1}(x, \phi_1(x)) + d^{r_2}(x, \phi_2(x)) \right] \right)$$

Proof of Lemma 11

- The value of the solution follows directly from the LP
- It is feasible since
- 1. $b \in [0,1]$, since $b = \frac{k |C_1|}{|C_2| |C_1|}$ and $|C_2| \geq k$

2.

$$\sum_{c_1 \in C_1} u_{c_1}(|G_{c_1}| - 1) = b \sum_{c_1 \in C_1} (|G_{c_1} - 1) = b(\sum_{c_1 \in C_1} |G_{c_1}| - \sum_{c_1 \in C_1} 1)$$

$$= b(|C_2| - |C_1|) = b|C_2| - (1 - a)|C_1| = a|C_1| + b|C_2| - |C_1| = k - |C_1| \le k$$

Lemma 12 (Bounding the cost to the LP)

Let U be the value of the optimal solution to the LP and let Φ be the cost of our solution (C,r) constructed from (C_1,r_1) and (C_2,r_2) . Then we have

$$\Phi \le 3 \sum_{c \in C_1} \left(r_1(c_1) \rho + 2s_{c_1} \rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left[d^{r_1}(x, \phi_1(x)) + 2d^{r_2}(x, \phi_2(x)) \right] \right)$$
$$-3U + 3\varepsilon \Phi^*$$

Proof of Lemma 12

By Lemma 6, for some $c_1 \in C_1$ where $u_{c_1} = 0$ we have the cost associated to c_1 as:

$$r'_{1}(c_{1})\rho + \sum_{x \in \mathcal{X}(G_{c_{1}})} d^{r'_{1}}(x, c_{1})$$

$$\leq r_{1}(c_{1})\rho + 2m_{c_{1}}\rho + \sum_{x \in \mathcal{X}(G_{c_{1}})} d^{r'_{1}}(x, \phi_{1}(\phi_{2}(x)))$$

$$\leq r_{1}(c_{1})\rho + 2s_{c_{1}}\rho + \sum_{x \in \mathcal{X}(G_{c_{1}})} 2d^{r_{2}}(x, \phi_{2}(x)) + d^{r_{1}}(x, \phi_{1}(x))$$

$$= r_{1}(c_{1})\rho + 2s_{c_{1}}\rho + \sum_{x \in \mathcal{X}(G_{c_{1}})} 2d^{r_{2}}(x, \phi_{2}(x)) + d^{r_{1}}(x, \phi_{1}(x))$$

$$- .u_{c_{1}}\left(r_{1}(c_{1})\rho + s_{c_{1}}\rho + \sum_{x \in \mathcal{X}(G_{c_{1}})} d^{r_{2}}(x, \phi_{2}(x)) + d^{r_{1}}(x, \phi_{1}(x))\right)$$

Proof of Lemma 12

For some $c_1 \in C_1$ where $u_{c_1} = 1$ we have the cost associated to c_1 as:

$$\begin{split} & \sum_{c_2 \in G_{c_1}} r_2(c_2)\rho + \sum_{x \in \mathcal{X}(G_{c_1})} d_2^r(x, \phi(c_2)) \\ = & s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} d_2^r(x, \phi(c_2)) \\ = & r_1(c_1)\rho + 2s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} 2d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x)) \\ & - u_{c_1}\Big(r_1(c_1)\rho + s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x))\Big) \end{split}$$

$$\begin{split} \sum_{c \in C_1; u_{c_1} = 0} \left(r_1(x) \rho + 2 m_{c_1} \rho + \sum_{x \in \mathcal{X}(G_{c_1})} d^{r'_1}(x, c_1) \right) \\ + \sum_{c_1 \in C_1; u_{c_1} = 1} \left(s_{c_1} \rho + \sum_{x \in \mathcal{X}(G_{c_1})} d^{r_2}(x, \phi_2(x)) \right) \\ \leq \sum_{c_1 \in C_1; u_{c_1} \in \{0, 1\}} \left(r_1(c_1) \rho + 2 s_{c_1} \rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left[d^{r_1}(x, \phi_1(x)) + 2 d^{r_2}(x, \phi_2(x)) \right] \right) \\ - \sum_{c_1 \in C_1; u_{c_1} \in \{0, 1\}} u_{c_1} \left(r_1(c_1) \rho + s_{c_1} \rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left[d^{r_1}(x, \phi_1(x)) + d^{r_2}(x, \phi_2(x)) \right] \right) \end{split}$$

- Now we have to bound $\tilde{c_1}$ cost.
- For any $c_2 \in G'_{\tilde{c_1}}$ we have $r_2(c_2)\rho \leq \varepsilon \Phi^*$. This inequality holds for all $c \notin T$, so it is only not true if $c_2 \in T$, and by definition of $G'_{\tilde{c_1}}$, $c_2 \neq \tilde{c_1}$. However if $c_2 \in T$ then $c_2 \in C_1$ since $T \subseteq C_1$. Then $c_2 \in G_{c_2}$ rather than $G'_{\tilde{c_1}}$ which is a contradiction.
- The radii cost of using center \tilde{c}_1 is $r_1(\tilde{c}_1)\rho + 2m_{\tilde{c}_1}\rho \leq r_1(\tilde{c}_1)\rho + 2\varepsilon\Phi^*$

Proof of Lemma 12

■ The expected radii cost of using center $c_2 \in G'_{\tilde{c}_1}$ is:

$$p_{\tilde{c}_1} r_2(c_2) \le u_{\tilde{c}_1} r_2(c_2) \rho$$

- If we connect some point $x\in\mathcal{X}(G_{\tilde{c}_1})$ to \tilde{c}_1 we have a cost of $d^{r_1'}(x,\tilde{c}_1)\leq 2d^{r_2}(x,\phi_2(x))+d^{r_1}(x,\phi_1(x))$
- If we connect some point $x \in \mathcal{X}(G_{\tilde{c}_1})$ to some $c_2 \in G_{\tilde{c}_1}$ we have a cost of $d^{r_2}(x,\phi_2(x))$
- So the expected point cost for some point $x \in \mathcal{X}(G_{\tilde{c}_1})$ is:

$$(1 - p_{\tilde{c}_1})(2d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x))) + p_{\tilde{c}_1}d^{r_2}(x, \phi_2(x))$$

Proof of Lemma 12

Using Lemma 8 we have:

$$\begin{split} &\sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (1 - p_{\tilde{c}_1})(2d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x))) + p_{\tilde{c}_1}d^{r_2}(x, \phi_2(x)) \\ &= \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (1 - p_{\tilde{c}_1})(d^{r_2}(x, \phi_2(x))) + (1 - p_{\tilde{c}_1})d^{r_1}(x, \phi_1(x)) + d^{r_2}(x, \phi_2(x)) \\ &\leq 3 \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (1 - u_{\tilde{c}_1})(d^{r_2}(x, \phi_2(x))) + (1 - u_{\tilde{c}_1})d^{r_1}(x, \phi_1(x)) + d^{r_2}(x, \phi_2(x)) \\ &= 3 \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (2 - u_{\tilde{c}_1})(d^{r_2}(x, \phi_2(x))) + (1 - u_{\tilde{c}_1})d^{r_1}(x, \phi_1(x)) \end{split}$$

Proof of Lemma 12

If $\tilde{c}_1 \in T$ it is in $G_{\tilde{c}_1}$ but not $G'_{\tilde{c}_1}$ Then from summing the terms found above we have:

$$r_{1}(\tilde{c}_{2})\rho + 2\varepsilon\Phi^{*} + \sum_{c_{2}\in G'_{\tilde{c}_{1}}} u_{\tilde{c}_{1}}r_{2}(c_{2})\rho$$

$$+3\sum_{x\in\mathcal{X}(G_{\tilde{c}_{1}})} (2-u_{\tilde{c}_{1}})(d^{r_{2}}(x,\phi_{2}(x))) + (1-u_{\tilde{c}_{1}})d^{r_{1}}(x,\phi_{1}(x))$$

$$= (1-u_{\tilde{c}_{1}})r_{1}(\tilde{c}_{1}) + u_{\tilde{c}_{1}}r_{1}(\tilde{c}_{1})\rho + 2\varepsilon\Phi^{*} + \sum_{c_{2}\in G'_{\tilde{c}_{1}}} u_{\tilde{c}_{1}}r_{2}(c_{2})\rho$$

$$+3\sum_{x\in\mathcal{X}(G_{\tilde{c}_{1}})} (2-u_{\tilde{c}_{1}})(d^{r_{2}}(x,\phi_{2}(x))) + (1-u_{\tilde{c}_{1}})d^{r_{1}}(x,\phi_{1}(x))$$

$$= (1 - u_{\tilde{c}_1})r_1(\tilde{c}_1)\rho + 2\varepsilon\Phi^* + \sum_{c_2 \in G_{\tilde{c}_1}} u_{\tilde{c}_1}r_2(c_2)\rho$$

$$+3\sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (2 - u_{\tilde{c}_1})(d^{r_2}(x, \phi_2(x))) + (1 - u_{\tilde{c}_1})d^{r_1}(x, \phi_1(x))$$

$$= (1 - u_{\tilde{c}_1})r_1(\tilde{c}_1)\rho + 2\varepsilon\Phi^* + u_{\tilde{c}_1}s_{\tilde{c}_1}\rho$$

$$+3\sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (2 - u_{\tilde{c}_1})(d^{r_2}(x, \phi_2(x))) + (1 - u_{\tilde{c}_1})d^{r_1}(x, \phi_1(x))$$

$$\leq (1 - u_{\tilde{c}_1}) r_1(\tilde{c}_1) \rho + 2\varepsilon \Phi^* + (2 - u_{\tilde{c}_1}) s_{\tilde{c}_1} \rho$$

$$+3 \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (2 - u_{\tilde{c}_1}) (d^{r_2}(x, \phi_2(x))) + (1 - u_{\tilde{c}_1}) d^{r_1}(x, \phi_1(x))$$

$$\leq 3 \Big(r_1(\tilde{c}_2) \rho + 2s_{\tilde{c}_1} \rho + \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (2d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x))) \Big)$$

$$-3u_{\tilde{c}_1} \Big(r_1(\tilde{c}_1) \rho + s_{\tilde{c}_1} \rho + \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (d^{r_2}(x, \phi_2(x)) d^{r_1}(x, \phi_1(x))) \Big) + 2\varepsilon \Phi^*$$

Proof of Lemma 12

If $\tilde{c}_1 \notin T$ then $r_1(\tilde{c}_1 \rho) \leq \varepsilon \Phi^*$ so we have:

$$r_{1}(\tilde{c}_{2})\rho + 2\varepsilon\Phi^{*} + \sum_{c_{2}\in G'_{\tilde{c}_{1}}} u_{\tilde{c}_{1}}r_{2}(c_{2})\rho$$

$$+3\sum_{x\in\mathcal{X}(G_{\tilde{c}_{1}})} (2-u_{\tilde{c}_{1}})(d^{r_{2}}(x,\phi_{2}(x))) + (1-u_{\tilde{c}_{1}})d^{r_{1}}(x,\phi_{1}(x))$$

$$\leq 3\varepsilon\Phi^{*} + \sum_{c_{2}\in G_{\tilde{c}_{1}}} u_{\tilde{c}_{1}}r_{2}(c_{2})\rho$$

$$+3\sum_{x\in\mathcal{X}(G_{\tilde{c}_{1}})} (2-u_{\tilde{c}_{1}})(d^{r_{2}}(x,\phi_{2}(x))) + (1-u_{\tilde{c}_{1}})d^{r_{1}}(x,\phi_{1}(x))$$

$$\begin{split} &=3\varepsilon\Phi^* + u\tilde{c}_1s_{\tilde{c}_1}\rho + 3\sum_{x\in\mathcal{X}(G_{\tilde{c}_1})}(2-u_{\tilde{c}_1})(d^{r_2}(x,\phi_2(x))) + (1-u_{\tilde{c}_1})d^{r_1}(x,\phi_1(x))\\ &\qquad \leq 3\varepsilon\Phi^* + (2-u\tilde{c}_1)s_{\tilde{c}_1}\rho\\ &\qquad + 3\sum_{x\in\mathcal{X}(G_{\tilde{c}_1})}(2-u_{\tilde{c}_1})(d^{r_2}(x,\phi_2(x))) + (1-u_{\tilde{c}_1})d^{r_1}(x,\phi_1(x)) \end{split}$$

$$\leq 3 \Big(r_1(\tilde{c}_2) \rho + 2s_{\tilde{c}_1} \rho + \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (2d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x))) \Big)$$

$$-3u_{\tilde{c}_1} \Big(r_1(\tilde{c}_1) \rho + s_{\tilde{c}_1} \rho + \sum_{x \in \mathcal{X}(G_{\tilde{c}_1})} (d^{r_2}(x, \phi_2(x)) d^{r_1}(x, \phi_1(x))) \Big) + 3\varepsilon \Phi^*$$

Proof of Lemma 12

By summing over each $c_1 \in C_1$; $u_{\tilde{c_1} \in \{0,1\}}$ and adding the cost associated with \tilde{c}_1 we obtain:

$$\Phi \le 3 \sum_{c \in C_1} \left(r_1(c_1)\rho + 2s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left[d^{r_1}(x, \phi_1(x)) + 2d^{r_2}(x, \phi_2(x)) \right] \right)$$
$$-3U + 3\varepsilon \Phi^*$$

Proof of Main Claim

By Lemma 10 we have:

$$\Phi \le 3 \sum_{c \in C_1} (r_1(c_1)\rho + 2s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} (2d^{r_2}(x, \phi_2(x)) + d^{r_1}(x, \phi_1(x))))$$
$$-3U + 3\varepsilon \Phi^*$$

Then substituting in Lemma 9 we have:

$$3\sum_{c\in C_1} (r_1(c_1)\rho + 2s_{c_1}\rho + \sum_{x\in\mathcal{X}(G_{c_1})} (2d^{r_2}(x,\phi_2(x)) + d^{r_1}(x,\phi_1(x))))$$

$$-3b\sum_{c\in C_1}(r_1(c_1)\rho + s_{c_1}\rho + \sum_{x\in\mathcal{X}(G_{c_1})}(d^{r_2}(x,\phi_2(x)) + d^{r_1}(x,\phi_1(x)))) + 3\varepsilon\Phi^*$$

Proof of Main Claim

• We know that a+b=1:

$$\Phi \leq 3 \sum_{c_1 \in C_1} \left(ar_1(c_1)\rho + (1+a)s_{c_1}\rho + \sum_{x \in \mathcal{X}(G_{c_1})} \left(ad^{r_1}(x, \phi_1(x)) + (1+a)d^{r_2}(x, \phi_2(x)) \right) \right) + 3\varepsilon \Phi^*$$

$$= 3a\Phi_1 + 3(1+a)\Phi_2 + 3\varepsilon \Phi^*$$

Proof of Main Claim

- Since $a \le 1/4$, $a \le b$
- And $a\Phi_1 + b\Phi_2 \le (3+\varepsilon)\Phi^*$
- So we have:

$$\Phi \le 3(a\Phi_1 + (1+a)\Phi_2) + 3\varepsilon\Phi^*$$

$$= 3(a\Phi_1 + b\Phi_2 + (1+a-b)\Phi_2) + 3\varepsilon\Phi^*$$

$$\le 3(3+\varepsilon)\Phi^* + 3(1+a-b)\Phi_2 + 3\varepsilon\Phi^*$$

$$= (9+6\varepsilon)\Phi^* + 6a\Phi_2$$

Proof of Main Claim

• $\Phi_2 \leq (3+\varepsilon)\Phi^* \leq \Phi_1$, since a+b=1, $a\Phi_1+b\Phi_2 \leq (3+\varepsilon)\Phi^*$, and $\Phi_1 \geq \Phi_2$. So

$$\Phi \le (9 + 6\varepsilon)\Phi^* + 6a\Phi_2$$

$$\le (9 + 6\varepsilon)\Phi^* + 6/4\Phi_2$$

$$\le (9 + 6\varepsilon)\Phi^* + 6/4(3 + \varepsilon)\Phi^*$$

$$\le (13.5 + 7.5\varepsilon)\Phi^*$$