
Bottleneck Spanning Tree

Dongfeng Gu

November 20, 2015

1 Introduction

In this section, we will introduce the concept of Minimum Bottleneck Spanning Tree (MBST) in
a(an) directed(undirected) connected graph G = (V,E) and we will use an example to show that
the MBST of a graph G can be more than one.

1.1 Minimum Bottleneck Spanning Tree

Given an undirected connected graph G = (V,E) and a function w : E → R, let S be the set of
all spanning trees in graph G and B(Si) is the maximum weight edge for the spanning tree Si. A
Minimum Bottleneck Spanning Tree (MBST) is the spanning tree Sj in S which the value of B(Sj)
is the minimum among all the B(S). To sum up, a MBST in an undirected graph is a spanning tree
in which the most expensive edge is as cheap as possible [7]. The maximum edge is the Bottleneck
of this spanning tree.

1.2 Example of MBST

Let’s take an example to have a better understanding on MBST.

Figure 1: Spanning Tree

1

The bottleneck edge for all spanning trees are 2, which means there exist no other tree having
its bottleneck value less than 2. Hence all three spanning trees are MBST.

1.3 Minimum Bottleneck Spanning Arborescence

For a directed graph, a similar problem is known as Minimum Bottleneck Spanning Arborescence
(MBSA). An arborescence of G(V,E) is a minimal subgraph of G which contains a directed path
from a specified node ”a” in G to each node of a subset V ′ of V − a. Node ”a” is called the root
of the arborescence. An arborescence is a spanning arborescence if V ′ = V − a.

1.4 Example of MBSA

Here is an example of MBSA, the red lines form a spanning arborescence.

Figure 2: Minimal Bottleneck Spanning Arborescence (MBSA)

2 Common Problems for MBST/MBSA

In this section, we will introduce the relationship between MBST and MST and address the solution
of finding MBST/MBSA in a graph G.

2.1 MST vs MBST

The well know problem for Minimum Bottleneck Spanning Tree (MBST) is related to the Minimum
Spanning Tree (MST) in which the MST is necessary an MBST and opposite is not true. Therefore,
any algorithm that can generate a MST can be also used for MBST.

Proof By contradiction. If MST is not a MBST, i.e. in a graph G(V,E), T1 is a MST in graph
G and T2 is a MBST in G, e1 is the maximum edge in T1 and e2 is the maximum edge in T2.
W (e1) > W (e2) because T2 is a MBST and it’s maximum edge should be the smallest among all
the possible spanning tree include the MST of graph G. If we add e1 to T2, T2 will form a cycle
and the cycle will have the maximum edge as e1. However according to the definition of the MST,

2

the total weight of the MST should be the minimum among all the possible spanning tree, we can
get e1 cannot belong to any MST, hence the MST should be a MBNT.

2.2 Find MSBT in graph G

Camerini’s algorithm[2] Given an undirected connected graph G(V,E). Let A be a subset of
E such that W (e) ≥ W (e′) for all e ∈ A, e′ ∈ B = E\A. Let F be a maximal Forest of GB and
η = N1, N2, ..., Nc, where Ni(i = 1, 2, ..., c) is the set of nodes of the i− th component of F.

Theorem 1 (a) If F is a spanning tree of G, a Minimum Bottleneck Spanning Tree (MBST)
of G is given by any MBST of GB.

(b) If F is not a spanning tree of G, a MBST of G can be obtained by adding to F any MBST
of G′, where G′ is the graph GA collapsed into η, i.e. G′ = (GA)η.

Proof Case (a) is obvious, because all the edges in B is less weight than any edges in A.
Then the maximum weight of edges in a MBST of G should be no less than the maximum weight
of edges in a MBST in GB. In case (b) let S be a MBST of G, modify S as many times as possible.
If e′ ∈ B − S is such that the (unique) cycle in S + e′ contains an edge e ∈ A, then S ← S + e′− e.
At the end, S = F ∪ S′, where F is a maximal forest of GB and S′ is a spanning tree of G′.

The following algorithm is suggested by Camerini:

Procedure 1 MBST(G,w)

let E be the set of edges of G;
if |E| = 1 then

return E
else
A← UH(E,w);
B ← E\A;
F ← FOREST (GB);
let η = N1, N2, ..., Nc, where Ni(i = 1, 2, ..., c) is the set of nodes of the i-th component of F ;
if c = 1 then

return MBST (GB, w)
else

return F ∪MBST ((GA)η, w);
end if

end if

In the above algorithm, the procedure A← UH(E,w) means that return a subset A of E such

that all the edges in A are less weight than the E\A and |A| = b |E|2 c. The procedure Forest(G)
returns a maximal forest of G.

Time Complexity According to [2], the procedure UH(E,w) can be run in O(|E|) steps be-
cause this problem is equivalent to the problem of finding a median of weighted set of elements[6].

3

The computation of FOREST (GB) can also be made in O(|E|) time by performing a depth-first
search of an undirected graph (Algorithm 5.2 of [1]). Therefore, the running time of UH, FOREST
can be written as O(m

2i
) at the i-th iteration, where m is the number of edges at the first call. To

sum up, the total running time of this algorithm is:

O(m+ m
2 + m

2 + m
4 + m

8 + ...+ 1) = O(m)

Example The following example shows that how the algorithm works.

Figure 3: Procedure 1

Figure 4: Procedure 2

4

Figure 5: Procedure 3

Figure 6: Procedure 4

2.3 Find MSBA in graph G

Camerini’s algorithm[2] The Camerini’s algorithm for MBSA is pretty much the same as the
algorithm for MBST. It has the following concept we need to know before we go into the details of
the pseudocode.
1. T in the algorithm represents a subset of E for which it is know that GT does not contain any
spanning arborescence rooted at node ”a”. Initially T is empty.
2. UH takes (E − T) set of edges in G and returns A ⊂ (E − T) such that:

|A| =
⌊
(|E−T |)

2

⌋
and

Wa ≥Wb, a ∈ Aandb ∈ B
3. BUSH(G) returns a maximal arborescence of G rooted at node ”a”.
The following algorithm is suggested by Camerini:

5

Procedure 2 MBSA(G,w,T)

let E be the set of edges of G;
if |E − T | > 1 then
A← UH(E − T);
B ← (E − T)\A;
F ← BUSH(GB∪T);
if F is a spanning arborescence of G then
S ← F ;
MBSA((GB∪T , w, T));

else
MBSA(G,w, T ∪B);

end if
end if

Time Complexity Accroding to [2], the procedure UH requires O(E), because the UH
function here is the same as the UH function in the previous MBST function. In addition, BUSH
procedure requires O(E) at each execution by applying a depth-first search for digraphs [1]. The
number of these executions is O(logE) since |E−T | is being halved at each call of MBSA. To sum
up, the total run time of this algorithm is O(ElogE).

Example The following example shows that how the algorithm works.

Figure 7: Procedure 1

The original graph is (G,w, T), when we run the MBSA(G,w, T), we can get F . Because F is
not a spanning arborescence of G, we run MBSA(G,w, T ∪B).

6

Figure 8: Procedure 2

After we run the MBSA(G,w, T ∪ B), we get F ′ and F ′ is not a spanning arborescence of G,
so we run MBSA(G,w, T ′ ∪B′) again.

Figure 9: Procedure 3

After we run the MBSA(G,w, T ′ ∪B′), we get F” and F” is a spanning arborescence of G, so
we run MBSA(GB”∪T”, w, T”).

7

Figure 10: Procedure 4

After we run MBSA(GB”∪T”, w, T”), |E − T | = 1, so the algorithm will return and we ge the
final answer which is S = F”.

Gabow and Tarjan algorithm[5] Gabow and Tarjan modified the Dijkstra’s algorithm for
single-source shortest path algorithm[3] to produces an MBSA. The algorithm is shown below:
In a directed graph G = (V,E), starting from the root s that has a path to all nodes in G (This
connected graph is a Tree), the algorithm will compute a parent p(v) in the tree for each v 6= s. It
maintains a collection of vertices F that are candidates for inclusion in the tree. Each vertex v ∈ F
has an associated cost c(v) for inclusion, which is the minimum cost of an edge from a vertex already
in the tree to v. Initially, F = s and c(s) = −∞. The procedure[9] of the algorithm is shown follow:

8

Procedure 3 MBSA-GT(G,w,T)

for |V | times do
Select v with minimum c(v) from F ;
Delete it from the F ;
for ∀edge(v, w) do
if w /∈ F or /∈ Tree then

add w to F ;
c(w) = c(v, w);
p(w) = v;

else
if w ∈ F and c(w) > c(v, w) then
c(w) = c(v, w);
p(w) = v;

end if
end if

end for
end for

Time Complexity If a Fibonacci heap[4] is used to implement the frontier set F , this algo-
rithm runs in O(|V |log|V |+ |E|) time.

Example The following example shows that how the algorithm works, the right graph in the
figure is G(V,E).

Figure 11: Procedure 1

At the first step of the algorithm we select the root s from the graph G, in the above figure,
vertex 6 is the root s. Then we found all the edge(6, w) ∈ E and their cost c(6, w), where w ∈ V .

9

Figure 12: Procedure 2

Next we move to the vertex 5 in the graph G, we found all the edge(5, w) ∈ E and their cost
c(5, w), where w ∈ V .

Figure 13: Procedure 3

Next we move to the vertex 4 in the graph G, we found all the edge(4, w) ∈ E and their cost
c(4, w), where w ∈ V . We find that the edge(4, 5) > edge(6, 5), so we keep edge(6, 5) and remove
the edge(4, 5).

10

Figure 14: Procedure 4

Next we move to the vertex 1 in the graph G, we found all the edge(1, w) ∈ E and their cost
c(1, w), where w ∈ V . We find that the edge(5, 2) > edge(1, 2), so we remove edge(5, 2) and keep
edge(1, 2).

Figure 15: Procedure 5

Next we move to the vertex 2 in the graph G, we found all the edge(2, w) ∈ E and their cost
c(2, w), where w ∈ V .

11

Figure 16: Procedure 6

Next we move to the vertex 3 in the graph G, we found all the edge(3, w) ∈ E and their cost
c(3, w), where w ∈ V . We find that the edge(3, 4) > edge(6, 4), so we remove edge(3, 4) and keep
edge(6, 4).

Figure 17: Procedure 7

After we loop through all the vertices in the graph G, the algorithm has finished.

3 Exercises

1 [8] Give a Linear time algorithm to determine if a graph G(V,E) contains a MBST with its
maximumedge <= b, where b is a given constant.

12

References

[1] Aho, A. V., & Hopcroft, J. E. (1974). Design & Analysis of Computer Algorithms. Pearson
Education India.

[2] Camerini, P. M. (1978). The min-max spanning tree problem and some extensions. Information
Processing Letters, 7(1), 10-14.

[3] Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische mathematik,
1959, 1(1): 269-271.

[4] Fredman M L, Tarjan R E. Fibonacci heaps and their uses in improved network optimization
algorithms[J]. Journal of the ACM (JACM), 1987, 34(3): 596-615.

[5] Gabow H N, Tarjan R E. Algorithms for two bottleneck optimization problems[J]. Journal of
Algorithms, 1988, 9(3): 411-417.

[6] Schnhage, A., Paterson, M. S., & Pippenger, N. (1975). Finding the median.

[7] https://en.wikipedia.org/wiki/Minimum_bottleneck_spanning_tree#Definitions

[8] http://flashing-thoughts.blogspot.ru/2010/06/everything-about-bottleneck-spanning.

html

[9] http://people.scs.carleton.ca/~maheshwa/courses/5703COMP/14Seminars/

BST-Report.pdf

13

https://en.wikipedia.org/wiki/Minimum_bottleneck_spanning_tree#Definitions
http://flashing-thoughts.blogspot.ru/2010/06/everything-about-bottleneck-spanning.html
http://flashing-thoughts.blogspot.ru/2010/06/everything-about-bottleneck-spanning.html
http://people.scs.carleton.ca/~maheshwa/courses/5703COMP/14Seminars/BST-Report.pdf
http://people.scs.carleton.ca/~maheshwa/courses/5703COMP/14Seminars/BST-Report.pdf

	Introduction
	Minimum Bottleneck Spanning Tree
	Example of MBST
	Minimum Bottleneck Spanning Arborescence
	Example of MBSA

	Common Problems for MBST/MBSA
	MST vs MBST
	Find MSBT in graph G
	Find MSBA in graph G

	Exercises

