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Abstract

We consider the problem of computing the closest pair in a set of n > 2 points.
“Closest” refers to the usual Euclidean distance: the distance between two points
p1 = (x1,y1) and p2 = (x2,Y2) is

d(p1,p2) = \/(M —x2)2 + (y1 —y2)%

I will present a randomized incremental algorithm. This algorithm adds the points one
by one, and maintains the closest pair. It stores the points in a grid, with cellsize the
current closest pair distance. This grid is used to update the closest pair when the next
point is added. If the grid is stored using a binary search tree, the expected running time
is O(nlogn). Using hashing, the expected time improves to O(n).

1 Introduction

Given a set S of n points in the plane, we want to find the pair of points closest to each other:
Return the pair of points P, Q in S such that:

d(P, Q) = min{d(p,q) : p,q € S,p # q},

where d(p, q) is the Euclidean distance between p and q.

In this paper I will present an incremental algorithm for this problem. The worst-case
running time is O(m?logn). I will use randomization to get an expected running time of
O(nlogn). Using hashing, the running time improves by logn.

2 Grids

A d-grid is a grid with cells of sidelength d. Each cell has lower-left corner with coordinates
(id,jd) and upper-right corner with coordinates ((i 4+ 1)d, (j + 1)d), for integers i and j.
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The id of a cell with lower-left corner (id,jd) is (i,j). The point p = (px, py) is in the cell
with id = ([p./d], pr/dJ ).



2.1 Example
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The cell with id = (1,0) contains the points: f, g and h
The cell with id = (—1,0) contains the points: d and e
The cell with id = (1, 1) contains the points: a, b and ¢

2.2 Storing points in a grid
To store a set S of points in a d-grid:
1. For each p € S we compute the id of the cell containing p.
2. Store the id’s of the non-empty cells in a binary search tree or a hash table.

3. With each non-empty cell, store a list of all points in this cell.

3 The Algorithm

Let S = {p1,p2y...,Pn} be a set of n points in the plane. The algorithm computes a closest
pair in the set S; = {p1,p2y...,pif fori=2,3,...,n.

1. i:= 2; CP-distance = d(p1,p2);
2. for 1 =3,4,...,n, given the CP-distance d of S;_;, compute the CP-distance of §;.

In the for-loop, we store the points of S; 7 in a d-grid. To compute the CP-distance of S,
we compute the distance beween p; and all points in the 9 cells around p;. If the CP-distance
does not change, we add p; to the d-grid. If the CP-distance changes, we store all points of S;
in a new grid.
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3.1 How many points in one cell?

One cell has at most 4 points. To prove this by contradiction, we assume the number of point
in one cell is at least 5. Split this cell into 4 cells of size d/2. Then one of the small cells
has 2 points, their distance is at most v/2d/2 < d. This is a contradiction, because d is the
CP-distance.

d/2

3.2 Time for one iteration

To update the CP-distance d, we need to find 9 cells, each having at most 4 points. This will
take O(log i) if we store the grid in a binary search tree and O(1) if we store it in a hash table.
Computing at most 36 distances takes O(1).

If d did not change: insert the id of p;’s cell into the binary search tree, takes O(logi), or
into the hash table, takes O(1) time.

if d changed: Store the points of S; in the grid for the new d. With a binary search tree
takes O(ilog1i) and hash table O(1i).

3.3 Total running time

The total running time:
1. O(n?logn) using a binary search tree.
2. O(n?) using a hash table.
Consider the following example:

pl p2 p3 p4d  pd

In each iteration, d changes and we take a new grid:

Iteration 1: store py and p,, we get CP-distance = d(p1,p2).

Iteration 2: add ps, we get CP-distance = d(p2,ps).

Iteration 3: add p4, we get CP-distance = d(p3,pa4).

Iteration 4: add ps, we get CP-distance = d(pa, ps).

In this case, the total running time is ®(n?logn) using a binary search tree and O(n?)
using hashing.

Consider the same example, but number the points from right to left:

PO p4 p3 p2 pl

The grid-size never changes:
Iteration 1: store py and p,, we get CP-distance = d(p1,p2).



Iteration 2: add p3, we get CP-distance = d(p1,p2)-

Iteration 3: add p4, we get CP-distance = d(p1,p2).

Iteration 4: add ps, we get CP-distance = d(p1,p2).

In this case, the total running time is @(nlogn) using a binary search tree and O(n) using
hashing.

4 The randomized algorithm

The running time depends on the numbering of the points. We take a random numbering of
the points, take a random permutation p1,p2,...,Pn.

The random variable X denotes the total running time. First, I will determine the expected
value E(X) when hashing is used.

Define
X, — 1 if the grid changes in iteration i
' | 0 if the grid does not change in iteration i
Then N
X=0(m)+)> X;-0(i)
i=3
and

We know that
E(X;) =Pr(X;=1).

In iteration i, we insert p; into the grid for S; ;. Afterwards, we have the grid for S;.
The grid changes if and only if the CP-distance of S; is smaller than the CP-distance of S; ;.
Imagine that we run the algorithm backwards: in this iteration, we pick a random point in S;
and delete it.

Let (a,b) be the CP-pair in S;. The CP-distance changes if and only if a or b is deleted.
Each point of S; has a probability of 1/1 of being deleted. Therefore,

We get

EX)=0(Mm)+ ) % -0(1) =0(n)+ > 0O(1) =0(n).
i=3 i

If we use a binary search tree, then

n

X =0(nlogn)+ > X;-O(ilogi)

and

5 Lower bounds

Consider the following problem. Given numbers ay,...,a,, decide if they are all different.
Algorithms for this problem that use +, —, %, /, V> <; <, and nothing else, take Q(nlogn)
time. This was proved in [7] for deterministic algorithms and in [6] for randomized algorithms.

The numbers a;,...,a, are all different is the same as their CP-distance is > 0. The same
lower bounds hold for the closest pair problem.

The randomized algorithm in this paper takes O(n) expected time if hashing is used. This
is not a contradiction, because hashing uses more operations, such as the modulo-operation.
That means, the hashing based algorithm is not in the same model of computation as in [6, 7].
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