COMP 5703 - Finding the closest pair of points

Katie Duong - 100801959
October 30, 2015

Abstract

We consider the problem of computing the closest pair in a set of n > 2 points.
“Closest” refers to the usual Euclidean distance: the distance between two points
p1 = (x1,y1) and p2 = (x2,Y2) is

d(p1,p2) = \/(M —x2)2 + (y1 —y2)%

I will present a randomized incremental algorithm. This algorithm adds the points one
by one, and maintains the closest pair. It stores the points in a grid, with cellsize the
current closest pair distance. This grid is used to update the closest pair when the next
point is added. If the grid is stored using a binary search tree, the expected running time
is O(nlogn). Using hashing, the expected time improves to O(n).

1 Introduction

Given a set S of n points in the plane, we want to find the pair of points closest to each other:
Return the pair of points P, Q in S such that:

d(P, Q) = min{d(p,q) : p,q € S,p # q},

where d(p, q) is the Euclidean distance between p and q.

In this paper I will present an incremental algorithm for this problem. The worst-case
running time is O(m?logn). I will use randomization to get an expected running time of
O(nlogn). Using hashing, the running time improves by logn.

2 Grids

A d-grid is a grid with cells of sidelength d. Each cell has lower-left corner with coordinates
(id,jd) and upper-right corner with coordinates ((i 4+ 1)d, (j + 1)d), for integers i and j.

d

—

(«d,d) (0,) (d,a) ¥

(:d,0) (0,0) (d,0)

The id of a cell with lower-left corner (id,jd) is (i,j). The point p = (px, py) is in the cell
with id = ([p./d], pr/dJ ).



2.1 Example

a
[ )
C..b
d f
[ )
ec g.
(0,0) h

The cell with id = (1,0) contains the points: f, g and h
The cell with id = (—1,0) contains the points: d and e
The cell with id = (1, 1) contains the points: a, b and ¢

2.2 Storing points in a grid
To store a set S of points in a d-grid:
1. For each p € S we compute the id of the cell containing p.
2. Store the id’s of the non-empty cells in a binary search tree or a hash table.

3. With each non-empty cell, store a list of all points in this cell.

3 The Algorithm

Let S = {p1,p2y...,Pn} be a set of n points in the plane. The algorithm computes a closest
pair in the set S; = {p1,p2y...,pif fori=2,3,...,n.

1. i:= 2; CP-distance = d(p1,p2);
2. for 1 =3,4,...,n, given the CP-distance d of S;_;, compute the CP-distance of §;.

In the for-loop, we store the points of S; 7 in a d-grid. To compute the CP-distance of S,
we compute the distance beween p; and all points in the 9 cells around p;. If the CP-distance
does not change, we add p; to the d-grid. If the CP-distance changes, we store all points of S;
in a new grid.

Pi

[ ]
[ ]
o




3.1 How many points in one cell?

One cell has at most 4 points. To prove this by contradiction, we assume the number of point
in one cell is at least 5. Split this cell into 4 cells of size d/2. Then one of the small cells
has 2 points, their distance is at most v/2d/2 < d. This is a contradiction, because d is the
CP-distance.

d/2

3.2 Time for one iteration

To update the CP-distance d, we need to find 9 cells, each having at most 4 points. This will
take O(log i) if we store the grid in a binary search tree and O(1) if we store it in a hash table.
Computing at most 36 distances takes O(1).

If d did not change: insert the id of p;’s cell into the binary search tree, takes O(logi), or
into the hash table, takes O(1) time.

if d changed: Store the points of S; in the grid for the new d. With a binary search tree
takes O(ilog1i) and hash table O(1i).

3.3 Total running time

The total running time:
1. O(n?logn) using a binary search tree.
2. O(n?) using a hash table.
Consider the following example:

pl p2 p3 p4d  pd

In each iteration, d changes and we take a new grid:

Iteration 1: store py and p,, we get CP-distance = d(p1,p2).

Iteration 2: add ps, we get CP-distance = d(p2,ps).

Iteration 3: add p4, we get CP-distance = d(p3,pa4).

Iteration 4: add ps, we get CP-distance = d(pa, ps).

In this case, the total running time is ®(n?logn) using a binary search tree and O(n?)
using hashing.

Consider the same example, but number the points from right to left:

PO p4 p3 p2 pl

The grid-size never changes:
Iteration 1: store py and p,, we get CP-distance = d(p1,p2).



Iteration 2: add p3, we get CP-distance = d(p1,p2)-

Iteration 3: add p4, we get CP-distance = d(p1,p2).

Iteration 4: add ps, we get CP-distance = d(p1,p2).

In this case, the total running time is @(nlogn) using a binary search tree and O(n) using
hashing.

4 The randomized algorithm

The running time depends on the numbering of the points. We take a random numbering of
the points, take a random permutation p1,p2,...,Pn.

The random variable X denotes the total running time. First, I will determine the expected
value E(X) when hashing is used.

Define
X, — 1 if the grid changes in iteration i
' | 0 if the grid does not change in iteration i
Then N
X=0(m)+)> X;-0(i)
i=3
and

We know that
E(X;) =Pr(X;=1).

In iteration i, we insert p; into the grid for S; ;. Afterwards, we have the grid for S;.
The grid changes if and only if the CP-distance of S; is smaller than the CP-distance of S; ;.
Imagine that we run the algorithm backwards: in this iteration, we pick a random point in S;
and delete it.

Let (a,b) be the CP-pair in S;. The CP-distance changes if and only if a or b is deleted.
Each point of S; has a probability of 1/1 of being deleted. Therefore,

We get

EX)=0(Mm)+ ) % -0(1) =0(n)+ > 0O(1) =0(n).
i=3 i

If we use a binary search tree, then

n

X =0(nlogn)+ > X;-O(ilogi)

and

5 Lower bounds

Consider the following problem. Given numbers ay,...,a,, decide if they are all different.
Algorithms for this problem that use +, —, %, /, V> <; <, and nothing else, take Q(nlogn)
time. This was proved in [7] for deterministic algorithms and in [6] for randomized algorithms.

The numbers a;,...,a, are all different is the same as their CP-distance is > 0. The same
lower bounds hold for the closest pair problem.

The randomized algorithm in this paper takes O(n) expected time if hashing is used. This
is not a contradiction, because hashing uses more operations, such as the modulo-operation.
That means, the hashing based algorithm is not in the same model of computation as in [6, 7].

4



References

Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society.
Jon Kleinberg, Eva Tardos, Algorithm Design, Chapter 13. Addison Wesley.

Michiel Smid. The closest pair problem: a randomized incremental algorithm. Carleton
University

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms. The MIT Press Cambridge, Massachusetts London, England.

Mordecai Golin, Rajeev Raman, Christian Schwarz, Michiel Smid. Simple randomized algo-
rithms for closest pair problems. Nordic Journal of Computing, 2, 1995, pages 3-27.

Dima Grigoriev, Marek Karpinski, Friedhelm Meyer auf der Heide, Roman Smolensky. A
lower bound for randomized algebraic decision trees. Computational Complexity, 6, pages

357-375, 1996.

Michael Ben-Or. Lower bounds for algebraic computation trees. Proc. 15th ACM Symposium
on Theory of Computing, pages 8086, 1983.



