
COMP 5703 - Finding the closest pair of points

Katie Duong - 100801959

October 30, 2015

Abstract

We consider the problem of computing the closest pair in a set of n ≥ 2 points.
“Closest” refers to the usual Euclidean distance: the distance between two points
p1 = (x1, y1) and p2 = (x2, y2) is

d(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2.

I will present a randomized incremental algorithm. This algorithm adds the points one
by one, and maintains the closest pair. It stores the points in a grid, with cellsize the
current closest pair distance. This grid is used to update the closest pair when the next
point is added. If the grid is stored using a binary search tree, the expected running time
is O(n logn). Using hashing, the expected time improves to O(n).

1 Introduction

Given a set S of n points in the plane, we want to find the pair of points closest to each other:
Return the pair of points P, Q in S such that:

d(P,Q) = min{d(p, q) : p, q ∈ S, p 6= q},

where d(p, q) is the Euclidean distance between p and q.
In this paper I will present an incremental algorithm for this problem. The worst-case

running time is O(n2 logn). I will use randomization to get an expected running time of
O(n logn). Using hashing, the running time improves by logn.

2 Grids

A d-grid is a grid with cells of sidelength d. Each cell has lower-left corner with coordinates
(id, jd) and upper-right corner with coordinates ((i+ 1)d, (j+ 1)d), for integers i and j.

d

d

•(-d,d)

•(-d,0)

•(0,d)

•(0,0)

•(d,d)

•(d,0)

•p

The id of a cell with lower-left corner (id, jd) is (i, j). The point p = (px, py) is in the cell
with id = (bpx/dc, bpy/dc).

1



2.1 Example

•a •b•c

•d•e
• f

•
g
•

h•(0,0)

The cell with id = (1, 0) contains the points: f, g and h
The cell with id = (−1, 0) contains the points: d and e
The cell with id = (1, 1) contains the points: a, b and c

2.2 Storing points in a grid

To store a set S of points in a d-grid:

1. For each p ∈ S we compute the id of the cell containing p.

2. Store the id’s of the non-empty cells in a binary search tree or a hash table.

3. With each non-empty cell, store a list of all points in this cell.

3 The Algorithm

Let S = {p1, p2, . . . , pn} be a set of n points in the plane. The algorithm computes a closest
pair in the set Si = {p1, p2, . . . , pi} for i = 2, 3, . . . , n.

1. i := 2; CP-distance = d(p1, p2);

2. for i = 3, 4, . . . , n, given the CP-distance d of Si−1, compute the CP-distance of Si.

In the for-loop, we store the points of Si−1 in a d-grid. To compute the CP-distance of Si,
we compute the distance beween pi and all points in the 9 cells around pi. If the CP-distance
does not change, we add pi to the d-grid. If the CP-distance changes, we store all points of Si
in a new grid.

d

d

•

•

•

•

•

•

•

•pi

2



3.1 How many points in one cell?

One cell has at most 4 points. To prove this by contradiction, we assume the number of point
in one cell is at least 5. Split this cell into 4 cells of size d/2. Then one of the small cells
has 2 points, their distance is at most

√
2d/2 < d. This is a contradiction, because d is the

CP-distance.

d

d/2

•

•

•

•

•

3.2 Time for one iteration

To update the CP-distance d, we need to find 9 cells, each having at most 4 points. This will
take O(log i) if we store the grid in a binary search tree and O(1) if we store it in a hash table.
Computing at most 36 distances takes O(1).

If d did not change: insert the id of pi’s cell into the binary search tree, takes O(log i), or
into the hash table, takes O(1) time.

if d changed: Store the points of Si in the grid for the new d. With a binary search tree
takes O(i log i) and hash table O(i).

3.3 Total running time

The total running time:

1. O(n2 logn) using a binary search tree.

2. O(n2) using a hash table.

Consider the following example:

•
p1

•
p2

•
p3

•
p4

•
p5

In each iteration, d changes and we take a new grid:
Iteration 1: store p1 and p2, we get CP-distance = d(p1, p2).
Iteration 2: add p3, we get CP-distance = d(p2, p3).
Iteration 3: add p4, we get CP-distance = d(p3, p4).
Iteration 4: add p5, we get CP-distance = d(p4, p5).
In this case, the total running time is Θ(n2 logn) using a binary search tree and O(n2)

using hashing.

Consider the same example, but number the points from right to left:

•
p5

•
p4

•
p3

•
p2

•
p1

The grid-size never changes:
Iteration 1: store p1 and p2, we get CP-distance = d(p1, p2).

3



Iteration 2: add p3, we get CP-distance = d(p1, p2).
Iteration 3: add p4, we get CP-distance = d(p1, p2).
Iteration 4: add p5, we get CP-distance = d(p1, p2).
In this case, the total running time is Θ(n logn) using a binary search tree and O(n) using

hashing.

4 The randomized algorithm

The running time depends on the numbering of the points. We take a random numbering of
the points, take a random permutation p1, p2, . . . , pn.

The random variable X denotes the total running time. First, I will determine the expected
value E(X) when hashing is used.

Define

Xi =

{
1 if the grid changes in iteration i
0 if the grid does not change in iteration i

Then

X = O(n) +

n∑
i=3

Xi ·O(i)

and

E(X) = O(n) +

n∑
i=3

E(Xi) ·O(i).

We know that
E(Xi) = Pr(Xi = 1).

In iteration i, we insert pi into the grid for Si−1. Afterwards, we have the grid for Si.
The grid changes if and only if the CP-distance of Si is smaller than the CP-distance of Si−1.
Imagine that we run the algorithm backwards: in this iteration, we pick a random point in Si
and delete it.

Let (a, b) be the CP-pair in Si. The CP-distance changes if and only if a or b is deleted.
Each point of Si has a probability of 1/i of being deleted. Therefore,

E(Xi) = Pr(Xi = 1) = 2/i.

We get

E(X) = O(n) +

n∑
i=3

2

i
·O(i) = O(n) +

n∑
i=3

O(1) = O(n).

If we use a binary search tree, then

X = O(n logn) +
n∑
i=3

Xi ·O(i log i)

and
E(X) = O(n logn).

5 Lower bounds

Consider the following problem. Given numbers a1, . . . , an, decide if they are all different.
Algorithms for this problem that use +, −, ×, /,

√
, <, ≤, and nothing else, take Ω(n logn)

time. This was proved in [7] for deterministic algorithms and in [6] for randomized algorithms.
The numbers a1, . . . , an are all different is the same as their CP-distance is > 0. The same

lower bounds hold for the closest pair problem.
The randomized algorithm in this paper takes O(n) expected time if hashing is used. This

is not a contradiction, because hashing uses more operations, such as the modulo-operation.
That means, the hashing based algorithm is not in the same model of computation as in [6, 7].

4



References

[1] Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society.

[2] Jon Kleinberg, Eva Tardos, Algorithm Design, Chapter 13. Addison Wesley.

[3] Michiel Smid. The closest pair problem: a randomized incremental algorithm. Carleton
University

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to
Algorithms. The MIT Press Cambridge, Massachusetts London, England.

[5] Mordecai Golin, Rajeev Raman, Christian Schwarz, Michiel Smid. Simple randomized algo-
rithms for closest pair problems. Nordic Journal of Computing, 2, 1995, pages 3-27.

[6] Dima Grigoriev, Marek Karpinski, Friedhelm Meyer auf der Heide, Roman Smolensky. A
lower bound for randomized algebraic decision trees. Computational Complexity, 6, pages
357-375, 1996.

[7] Michael Ben-Or. Lower bounds for algebraic computation trees. Proc. 15th ACM Symposium
on Theory of Computing, pages 8086, 1983.

5


