K-Means clustering accelerated algorithms using the triangle
inequality

Alejandra Ornelas Barajas
COMP 5703 Advanced Algorithms

December 2015

1 Introduction

The k-means clustering algorithm is a very popular tool for data analysis chosen as one of the top ten
data mining algorithms. The idea of the k-means optimization problem is that it seeks to partition
n data points into k clusters while minimizing the distance (square distance) between each data
point and the center of the cluster it belongs to [1].

Lloyd’s algorithm is the standard approach for this problem [4]. However, it spends a lot of
processing time computing the distances between each of the k cluster centers and the n data
points. Since points usually stay in the same clusters after a few iterations, much of this work is
unnecessary, making the naive implementation very inefficient (see figure 1 for pseudo-code) [6].

The total running time of Lloyd’s algorithm is O(wnkd) for w iterations, k centers, and n points
in d dimensions. In this paper we are going to present some optimizations to speed up Lloyd’s
algorithm using the triangle inequality.

Algorithm Lloyd’s k-means algorithm—the standard algorithm for minimizing
J(X,C).
procedure LLOYD(X, C)

while not converged do
for all i € N do {Find the closest center to each x (7).}

afiy + 1
for all j € K do
if lx (i) — ()l = [lx(i) = e(ali))] then
ali) < j
for all j € K do {Move the centers}
move ¢ j) to the mean of {x(i)|a(i) = j}

Figure 1: Algorithm 1

2 The Triangle Inequality in k-means

The triangle inequality is a very powerful tool from geometry that is applicable in the k-means
algorithm in multiple ways. Phillips demonstrated how to use it to accelerate the algorithm [5].
Claim: If center ¢’ is close to point x, and some other center c is far away from another center
¢’, then ¢’ must be closer than ¢ to .
Proof

e Consider the already computed distances Hx —c || and Hc —c ||

e By the triangle inequality we know that:
o=l <lle = el +ia— ¢
le =<l =llz = ¢l <llz el

e And we also know that 2H(E — C’H < ||c —c

}7 So:

2|z —e'f| |

T — C’H <|lz — |l
lz =€l <l — <
Which proves that ¢ is not closer than ¢’ to z without measuring the distance ||z — ¢||

Corollary: Some point-center distances of the k-means algorithm do not need to be computed.

2.1 Maintaining Distance Bounds with the Triangle Inequality

We can use the triangle inequality to cheaply maintain upper and lower bounds on the distance
between two points = and ¢’ (where ¢’ is the new location of the center c¢). Assuming that the
distance ||z — c|| has been calculated. After ¢ moves to ¢’, we measure ||c — ¢/||. The upper and
lower bounds on ||z — ¢|| are given by ||z —c|| —||c — /|| <||z — ¢|| < ||z —¢|| +]|c = ¢||. Figure 2
illustrates these bounds by the two dashed circles center on z. Thus, ¢’ must be inside the region
bounded by these two circles[6].

Figure 2: Upper and lower bounds

3 Accelerated Algorithms

In this section we will present three algorithms that use upper and lower bounds in order to accelerate
Lloyd’s algorithm.

3.1 Elkan’s Algorithm

Elkan introduced an algorithm that uses one upper bound and k lower bounds for each clustered
point z(i) [2]. The upper bound is given by u(i) > ||z(i) — c(a(i))||, where ||2(i) — c(a(i))|| is the
distance between (i) and its closest center ¢(a()). And each lower bounds are I(i, j) <||z(i) — c(j)||
where ||z(i) — ¢(j)|| is the distance between (i) and the center ¢(j).The bounds may be efficiently
updated by adding/subtracting the distance moved by each center after each k-means iteration.
Figure 3 shows the pseudo-code for this algorithm.

Algorithm Elkan’s algorithm—using k lower bounds per point and k* center-
center distances
procedure ELKAN(X, C)
al(iy < 1, u(i) < oo, ¥i € N {Initialize invalid bounds, all in one cluster. }
{i,j)«<0VieN jek
while not converged do
5: compute fle () —c(f M. Vi i"€e K
compute s(j) <= min;z; le(j) —e(f/2.¥j € K
for alli € N do
it u(i) = s(a(i)) then continue with next /
r +— True
100 forall ; € K do
ze—max(€(i, j). [le(aliy) —c(j)]/2)
if j = ali)oru(i) < zthen continue with next j
if r then
uli) <= [[x (i) = elatinll
15: r «— False
if (i) < z then continue with next f
L) < [lx (i) — e
ifE(i, j) < u(i)thena(i) « j

for all j € K do {Move the centers and track their movement }
20 move ¢(j) to its new location
let 8() be the distance moved by ¢(j)
for all i € N do {Update the upper and lower distance bounds)
uli') < wi(i) + 8a(in
forall j € K do
25: L, j)y < L. j)—28(7)

Figure 3: Algorithm 2

3.2 Hamerly’s Algorithm

Hamerly modified Elkan’s algorithm by using only one lower bound per point, {(i) (see figure 4 for
pseudo-code)[3]. This lower bound represents the minimum distance that any center (that is not
the closest center) can be to that point. How is this better? consider the two cases following cases.

o If u(i) <I(i): It is not possible for any center to be closer than the assigned center. Thus, the
algorithm can skip the computation of the distances between z(i) and the k centers.

o If /(i) < w(i): It might be that the closest center for z(i) has change. The algorithm first
tightens the upper bound by computing the exact distance ||z(i) — c(a(i))||. Then it checks
again if u(#) < I(¢) to skip the distance calculations between z(i) and the k centers. If not,
then it must compute those distances.

Having the single lower bound allows it to avoid entering the innermost loop more often than
Elkan’s algorithm. But Elkan’s algorithm computes fewer distances than Hamerly’s, and it doesn’t
work well with high dimensions because all centers tend to move a lot due the curse of dimensionality.

3.3 Drake’s Algorithm

Drake and Hamerly combine the first two algorithms (Elkan’s and Hamerly’s) using 1 < b < k lower
bounds on the b closest centers to each point. The value of b can be selected in advance or adaptively
learned while the algorithms runs [1].

The first b — 1 lower bounds for a point represent the lower bounds to the associated points that
are ranked 2 through b in increasing distance from the point. The last lower bound (number b,
furthest from the center) represents the lower bound on all the furthest & — b centers (this is like
Hamerly’s one lower bound, but only for the outermost centers). Figure 5 shows the pseudo-code
for this algorithm.

Algorithm Hamerly’s algorithm—using 1 lower bound per point
procedure HAMERLY (X, C)
a(i) <« Lou(i) < oo, £(i) < 0. ¥i € N |Initialize invalid bounds, all in one cluster.)
while not converged do
compute s(j) < ming=; le(j) —e(j)/2.¥j € K
5: for alli € N do
z < max(£(i), s(a(i)))
if (i) = z then continue with next i
uli) < |lx(i) — e(a(i)] {Tighten the upper bound}
if (i) < z then continue with next
10: Find () and ¢(j). the two closest centers to x (i), as well as the distances to each.
if j # a(i) then
a(i) « j
uli) < xiy—efa@nll
i) < llxi) — e ()l
15: for all j € K do {Move the centers and track their movement}
move ¢ j) toits new location
let (7) be the distance moved by ¢(j)
& e max;ex d(5)
for alli € & do {Update the upper and lower distance bounds }
20: wli) < wli) + dali))
E(i) = (i) =38

Figure 4: Algorithm 3

Increasing b incurs more computation overhead to update the bound values and sort each point’s
closest centers by their bound, but it is also more likely that one of the bounds will prevent searching
over all k centers. Experimentally, Drake determined that for k > 8, k/8 is a good floor for b.

Algorithm Drake’s algorithm—using b lower bounds per point
procedure DRAKE(X, C. b)
ali) < L u(i) < oo, ¥i € N [Initialize invalid bounds, all in one cluster. }
Hi.jr«<=0.¥VieN jel{l.....b}
while not converged do
5 m<—h
foralli € N do
J o argmax < jr=p i) = L0 f7)
if j < b then {The bounds pruned the outer centers.)
compute distances and reorder the j centers closest to x (V)
10): elseif j = b or £(i,) < u(i) then {Bounds were ineffective.}
compute distances from x (i) to all centers and sort the b closest

m <— max{m, f)
b max(k /8, m) {Reduce b if possible}
for all j € K do {Move the centers and track their movement }
15: move ¢(j) to its new location
let 5(j) be the distance moved by ¢ ()
8"« max;eg 8())
for all i € N do {Update the upper and lower distance bounds }
wl(iy «— w(i) + &lali))
20: i by < £(i.) =&
for j = b — 1 downto 1 do
let ¢(z) be the center that is the jth closest to x (i)
(i, j) = min(E(i, j)—8(z), (i, j + 1D

Figure 5: Algorithm 4

4 Bibliographic Notes

Lloyd’s algorithm was first introduced in 1982 [4] and it has been very popular ever since. A lot
of optimizations have been done base on his algorithm. In 2002 Phillips demonstrated how to use
the triangle inequality to accelerate the algorithm [5]. Then, in 2003 Elkan used the concept of
upper and lower bounds to provide another optimization for this algorithm [2]. Continuing with
the approach using these bounds, Hamerly provided another algorithm in [3]. And 2 years after he
collaborated with Drake to come up with an improved algorithm combining his work with Elkan’s

[1].

5 Exercises

1. Prove that the total running time of Lloyd’s algorithm is O(wnkd) for w iterations, k centers,
and n points in d dimensions.

2. Use the triangle inequality to prove that centers that are far from point’s assigned center are
also far from the point.

3. Prove that the upper and lower bounds on the given distance H:E — c/H are given by ||z — ¢|| —
le =l <llz =] <llz = el +[e =]

References

[1] Jonathan Drake and Greg Hamerly. Accelerated k-means with adaptive distance bounds. the
5th NIPS Workshop on Optimization for Machine Learning, OPT2012, pages 2-5, 2012.

[2] Charles Elkan. Using the Triangle Inequality to Accelerate -Means. Proceedings of the Twentieth
International Conference on Machine Learning (ICML-2003), pages 147153, 2003.

[3] Greg Hamerly. Making k-means even faster. Computer, pages 130-140, 2010.

[4] S. Lloyd. Least squares quantization in PCM. IFEEE Transactions on Information Theory,
28(2):129-137, 1982.

[5] Stevenl. Phillips. Acceleration of K-Means and Related Clustering Algorithms, volume 2409 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2002.

[6] Rui Xu and Donald C. Wunsch. Partitional Clustering. 2008.

