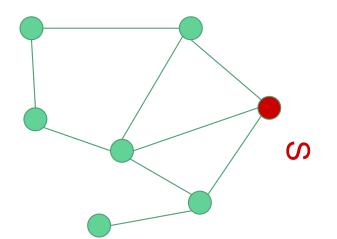
Parallel Maximal Independent Set

Comp 5703 - Edward Duong

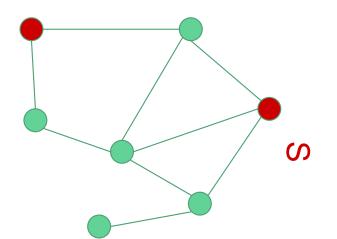
Independent Set

A subset S of vertices. No two vertices the are connected by an edge in G.



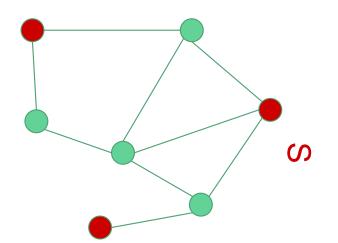
Independent Set

A subset S of vertices. No two vertices the are connected by an edge in G.

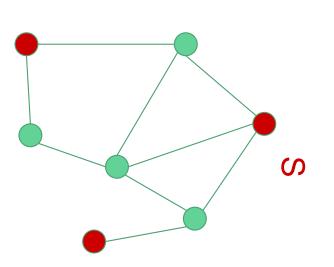


Independent Set

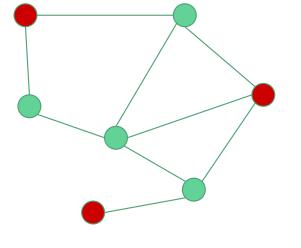
A subset S of vertices. No two vertices the are connected by an edge in G.



Not subset of any independent set



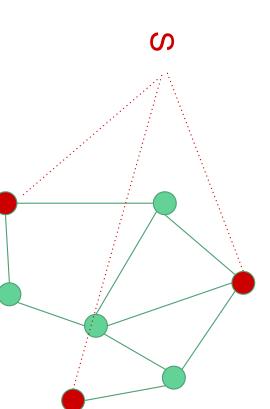
- Not subset of any independent set
- Each edge has an endpoint not in S
- I Each vertex is in S or has at least 1 neighbor in S



Given G = (V, E), a maximal independent set S \subset V satisfies the conditions:

 $N(S) \cup S = V$ and $N(S) \cap S = \emptyset$

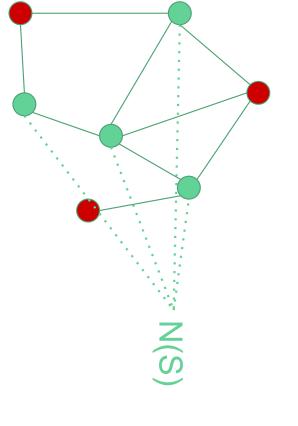
N(S) denotes the vertex neighbors of the set S

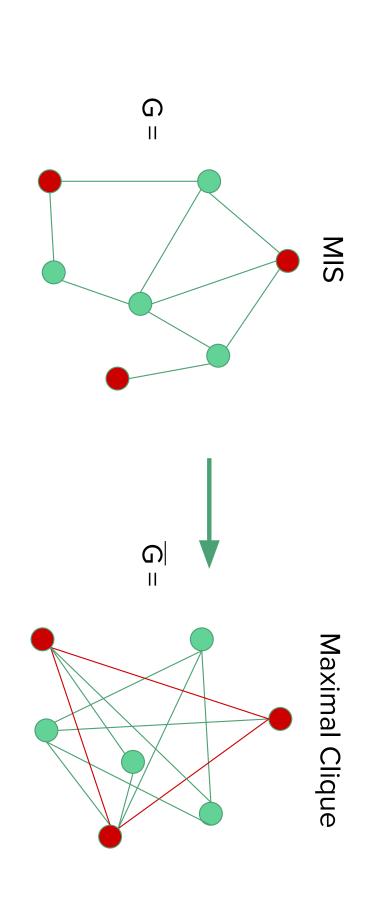


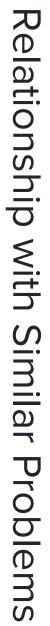
Given G = (V, E), a maximal independent set S \subset V satisfies the conditions:

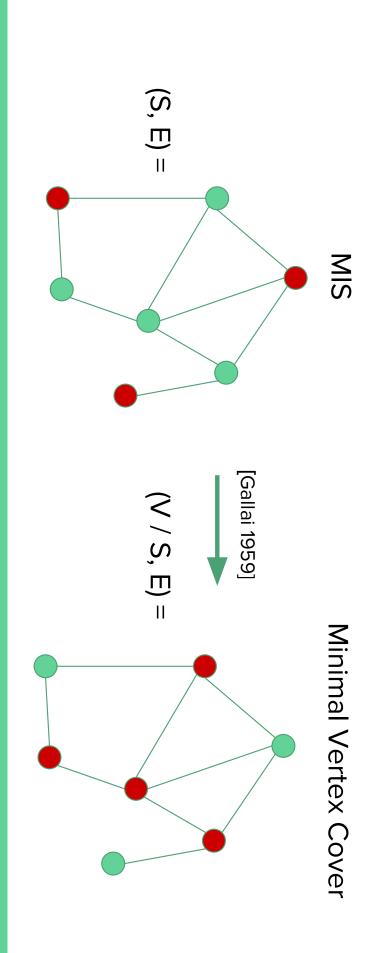
 $N(S) \cup S = V$ and $N(S) \cap S = \emptyset$

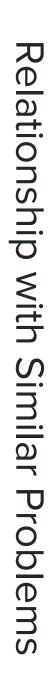
N(S) denotes the vertex neighbors of the set S

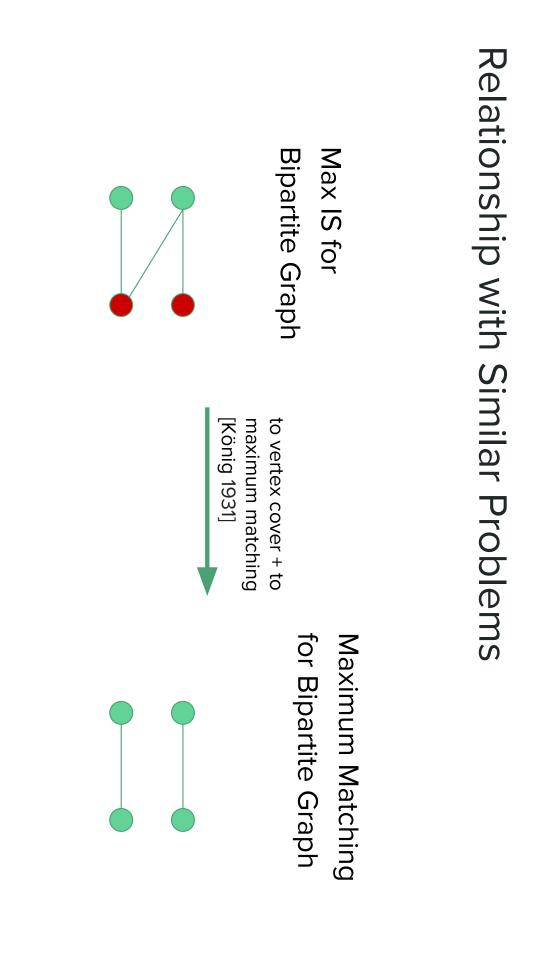








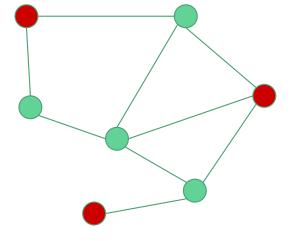


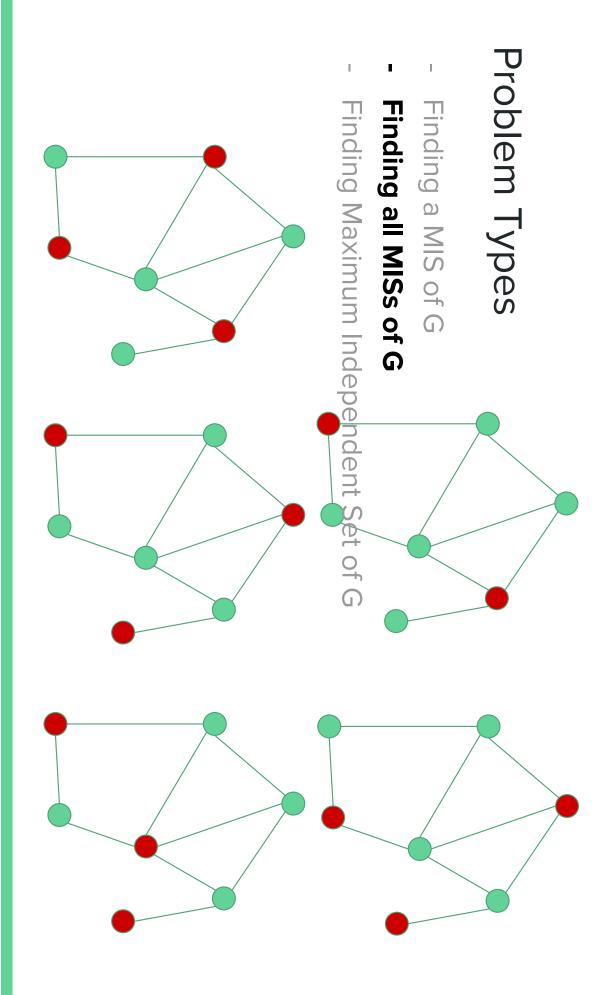


Problem Types

- Finding a MIS of G

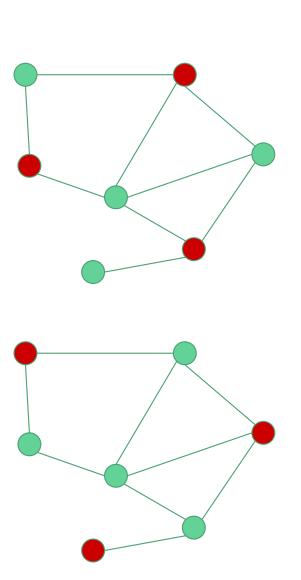
- Finding all MISs of G
- I Finding Maximum Independent Set of G

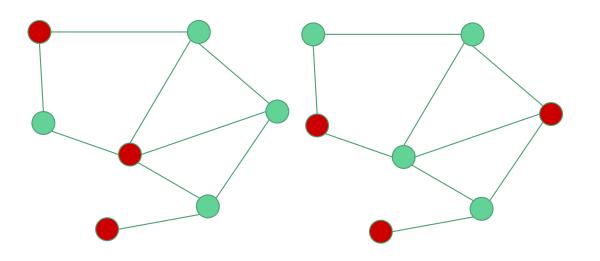




Problem Types

- Finding a MIS of G
- Finding all MISs of G
- Finding Maximum Independent Set of G



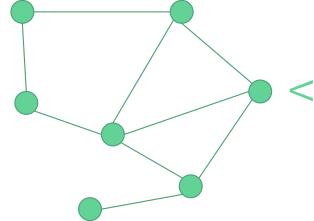


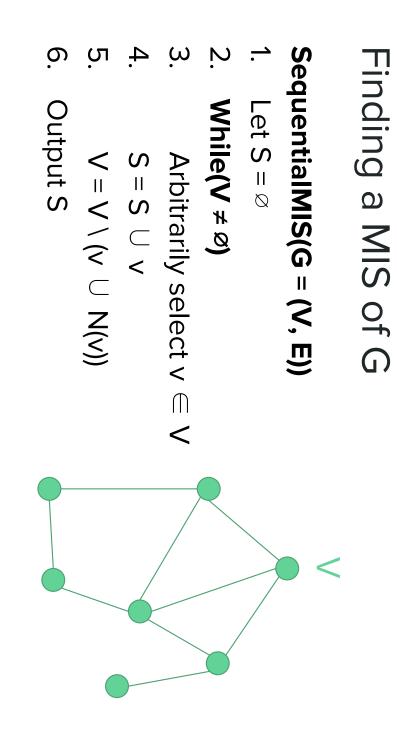
Finding a MIS of G

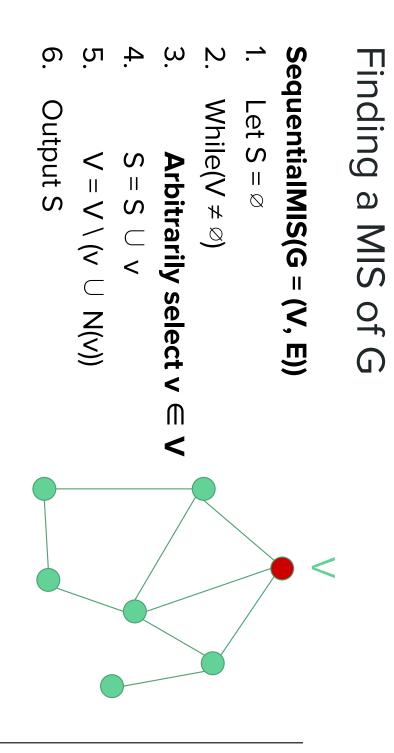
SequentialMIS(G = (V, E))

- 1. Let $S = \emptyset$
- 2. While(V ≠ ∅)
- 3. Arbitrarily select $v \in V$
- 4. $S = S \cup v$
- 5. $V = V \setminus (v \cup N(v))$
- 6. Output S

<u></u>თ ហ 4 ω <u>N</u> SequentialMIS(G = (V, E)) Finding a MIS of G While(V ≠ ∅) Output S Let $S = \emptyset$ Arbitrarily select $v \in V$ $\mathsf{V}=\mathsf{V}\setminus(\mathsf{v}\ \cup\ \mathsf{N}(\mathsf{v}))$ $\mathsf{N} \cap \mathsf{S} = \mathsf{S}$







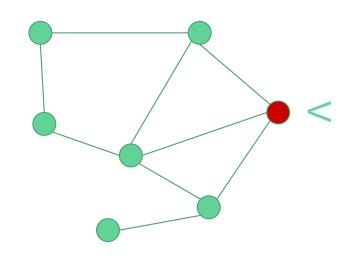
Finding a MIS of G SequentialMIS(G = (V, E)) 1. Let $S = \emptyset$ 2. While($V \neq \emptyset$) 3. Arbitrarily select $v \in V$ 4. $S = S \cup v$

ហ

 $\mathsf{V}=\mathsf{V}\setminus(\mathsf{v}\ \cup\ \mathsf{N}(\mathsf{v}))$

<u></u>თ

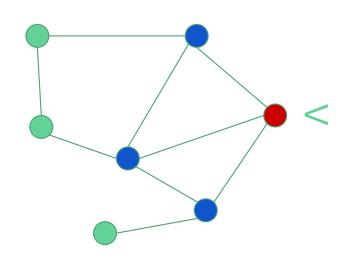
Output S

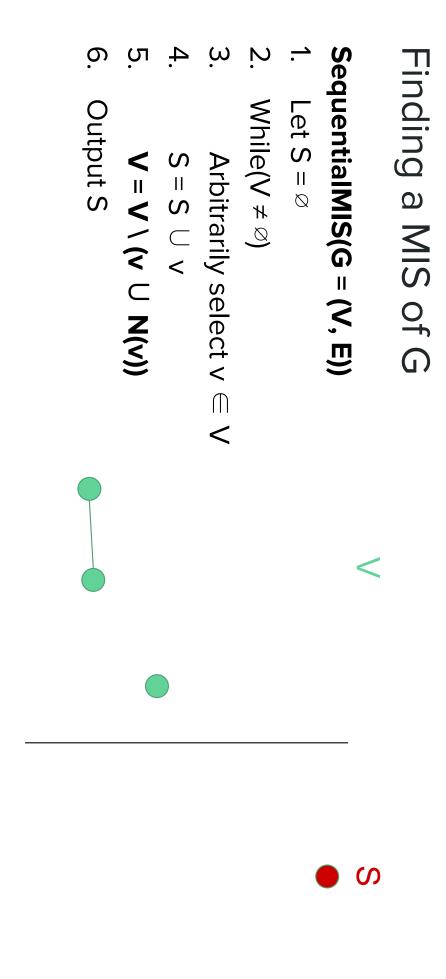


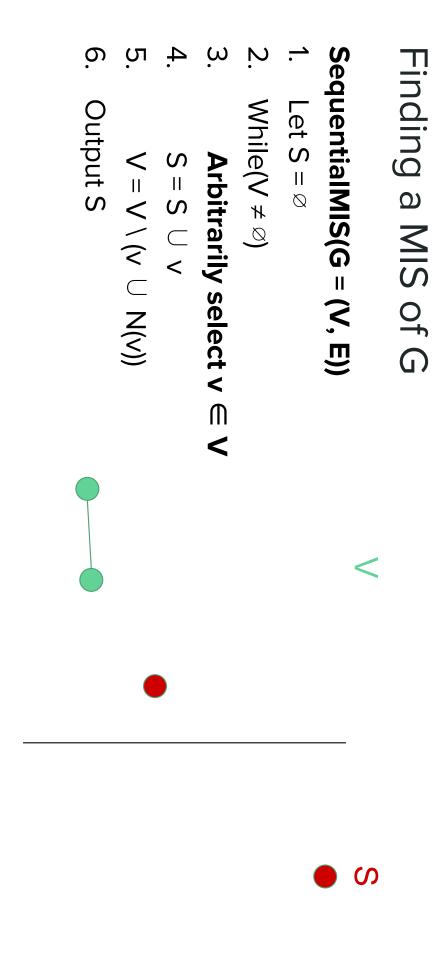
Finding a MIS of G SequentialMIS(G = (V, E)) 1. Let $S = \emptyset$ 2. While($V \neq \emptyset$) 3. Arbitrarily select $v \in V$ 4. $S = S \cup v$ 5. $V = V \setminus (v \cup N(v))$

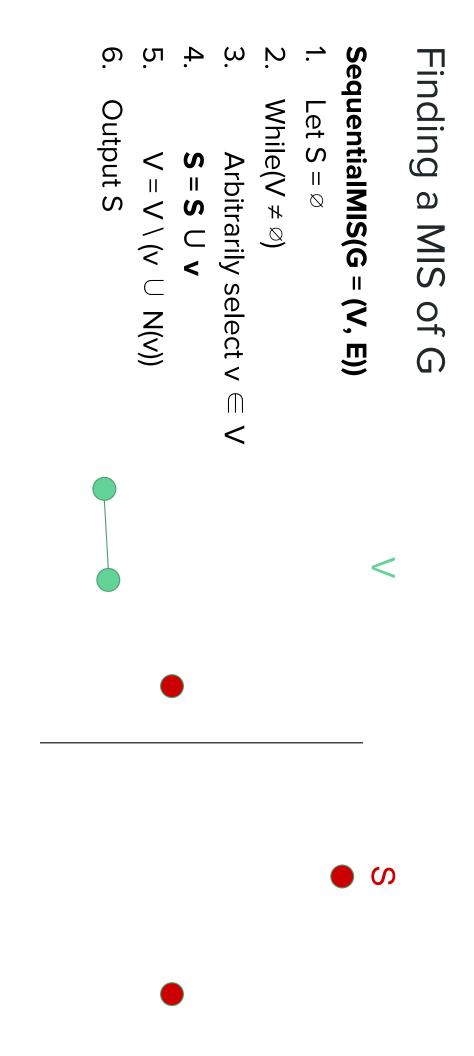
<u></u>თ

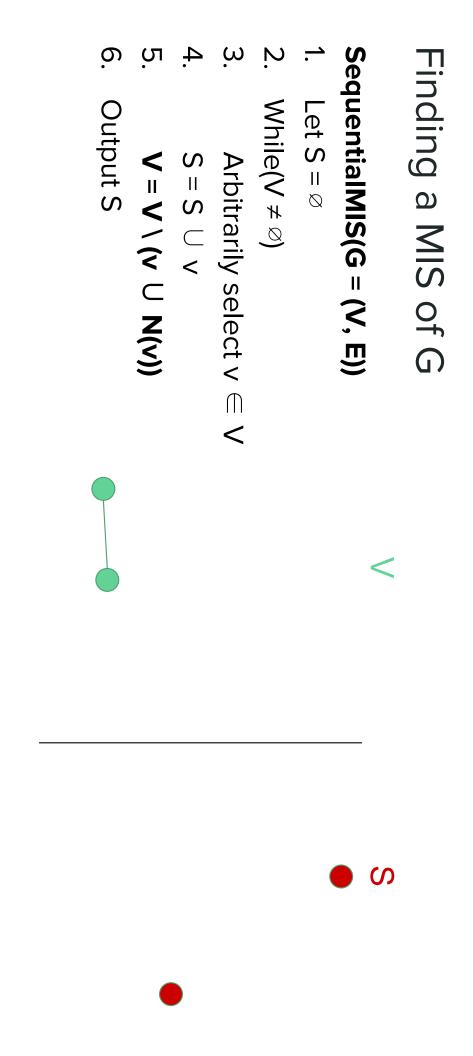
Output S

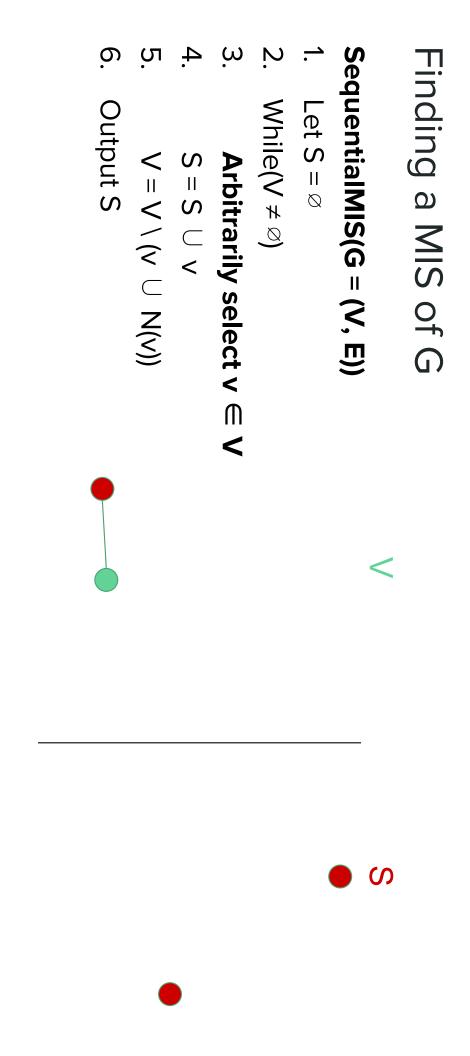


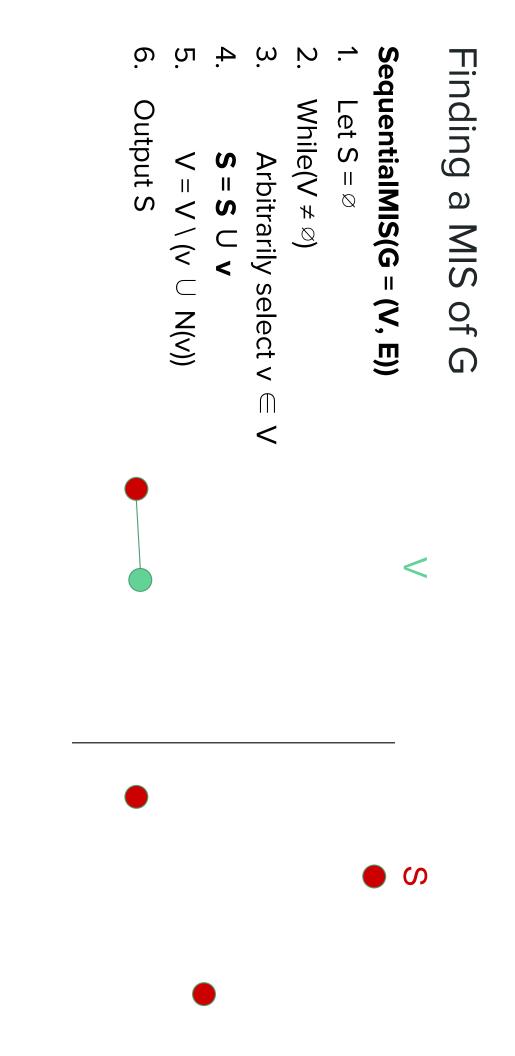










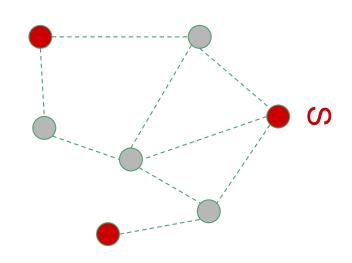


Finding a MIS of G
Sequential MIS of G (1)
1. Let
$$S = \emptyset$$

2. While ($\forall \neq \emptyset$)
3. Arbitrarily select $\forall \in V$
4. $S = S \cup \psi$
5. $\forall = \forall (\psi \cup N(\psi))$
6. Output S
6. Output S

Finding a MIS of G
SequentialMIS(G = (V, E))
SequentialMIS(G = (V, E))
1. Let
$$S = \emptyset$$

2. While($V \neq \emptyset$)
3. Arbitrarily select $v \in V$
4. $S = S \cup v$
5. $V = V \setminus (v \cup N(v))$
6. Output S



Finding a MIS of G SequentialMIS(G = (V, E)) 1. Let $S = \emptyset$ 2. While($V \neq \emptyset$) 3. Arbitrarily select $v \in V$ 4. $S = S \cup v$

Runtime: O(n)

Memory: O(n)

<u></u>თ

Output S

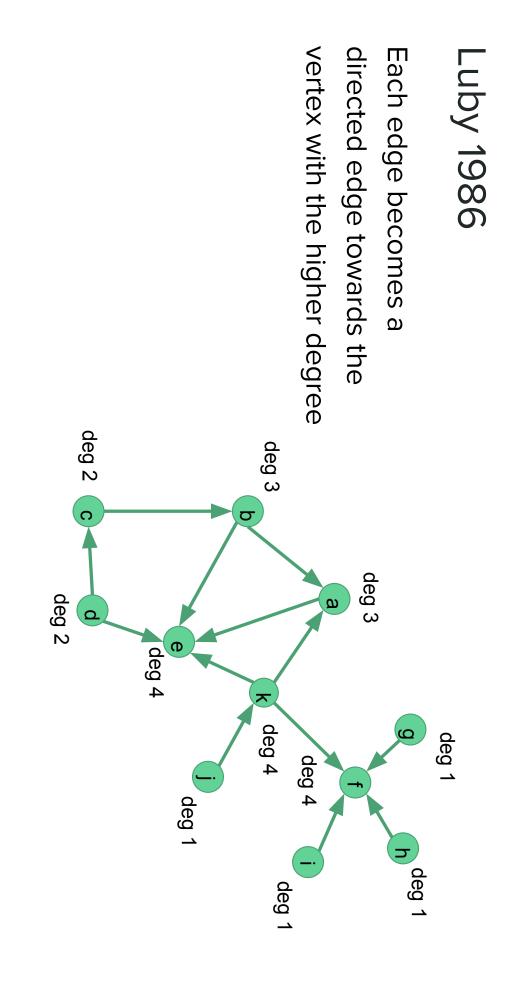
ហ

 $V = V \setminus (v \cup N(v))$

Luby 1986

ParalleIMIS(G = (V, E))

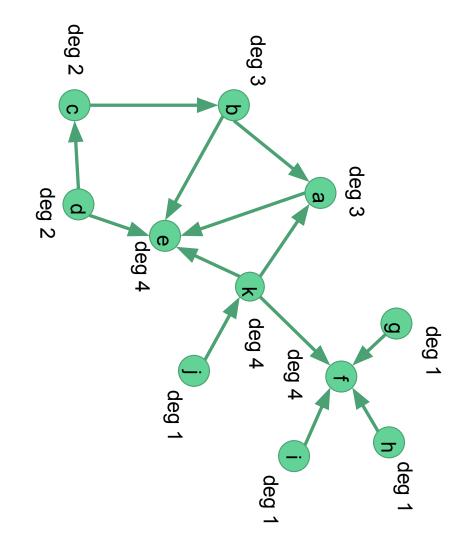
- 1. Let $S = \emptyset$
- 2. While(V ≠ ∅)
- ω For each $v \in V$ add it to S with probability 1/2d(v)
- 4 endpoint with lower degree (break ties lexicographically, etc.) For each $e \in E$, if both endpoints are in S, then remove the
- 6. $V = V \setminus (S \cup N(S))$
- 7. Output S



Luby 1986

A vertex v is bad if: >2/3 of N(v) is higher

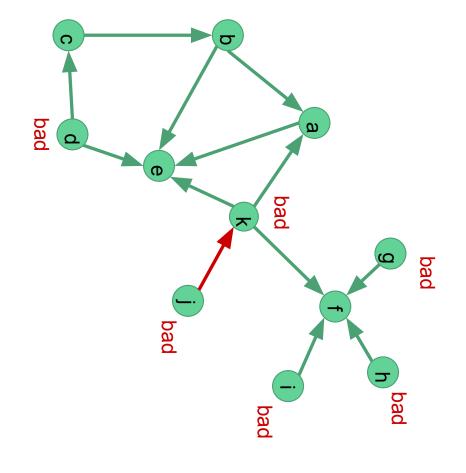
An edge is bad if: both endpoints are bad



Luby 1986

A vertex v is bad if: >2/3 of N(v) is higher

An edge is bad if: both endpoints are bad



Luby 1986 - Outline

- I Show that at least 1/2 of edges are always 'good'
- I A good node has a constant prob. of being added to S
- L So, every good edge has a constant prob. of being removed
- l Half the edges are good, therefore IEI drops by a constant factor each iteration

Métivier et al. 2010

ParallelMIS2(G = (V, E))

- 1. Let $S = \emptyset$
- 2. While ($V \neq \emptyset$)
- ω to its neighbors, $u \in N(v)$ For each $v \in V$ select a random number r(v) in [0, 1] and send it
- If r(v) < r(u), add v to S and inform its neighbors
- ហ If v is added, remove v and N(v) from V
- 6. Output S

Métivier et al. 2010 - Properties

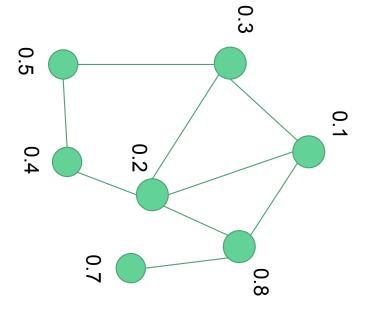
- I If v is added to S, then $u \in N(v)$ is prevented from being added to S
- I The vertex with the smallest value(s) during each iteration joins S, thus removing vertices from V until it becomes \varnothing
- I is O(logn) In each iteration, half the edges are removed, so the expected runtime

Métivier et al. 2010 - Outline

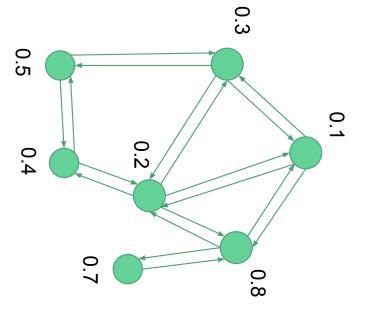
I Split each edge (v, w) \in E into 2 directed edges: (v, w) and (w, v) Define an event when a vertex is

removed

I Using linear expectation, that a constant fraction of edges are $E[\Sigma_i X_i] = \Sigma_i E[X_i]$, show that in expectation removed

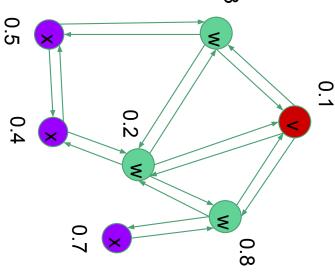


I Split each edge (v, w) \in E into 2 directed edges: (v, w) and (w, v)



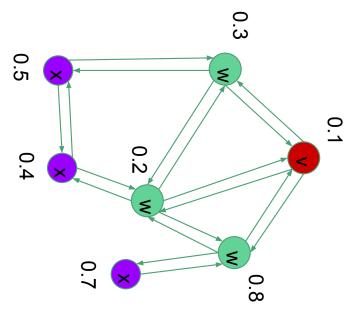
and $r(v) < r(w), w \in N(v)$ event (v → w): Given an ordered vertex pair (v, w), define the I removed Define an event when a vertex is 0.3

 $r(v) < r(x), x \in N(w)$



 $\begin{aligned} r(\mathbf{v}) &< r(\mathbf{w}), \, \mathbf{w} \, \in \, \mathsf{N}(\mathbf{v}) \\ \text{and} \\ r(\mathbf{v}) &< r(\mathbf{x}), \, \mathbf{x} \, \in \, \mathsf{N}(\mathbf{w}) \end{aligned}$

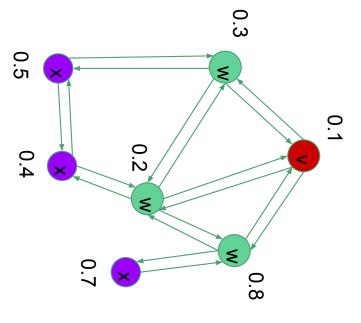
occurs with prob. at least 1 / (d(v) + d(w))



 $\begin{aligned} \mathsf{r}(\mathbf{v}) &< \mathsf{r}(\mathbf{w}), \, \mathsf{w} \, \in \, \mathsf{N}(\mathsf{v}) \\ \text{and} \\ \mathsf{r}(\mathbf{v}) &< \mathsf{r}(\mathbf{x}), \, \mathsf{x} \, \in \, \mathsf{N}(\mathsf{w}) \end{aligned}$

occurs with prob. at least 1 / (d(v) + d(w))

Pr(Event (v → w)) = 1 / (d(v) + d(w))

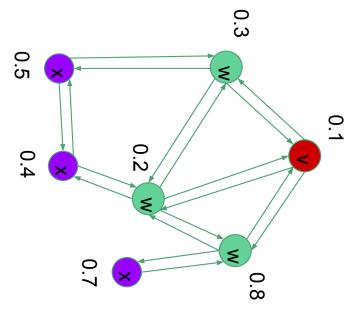


 $\begin{aligned} r(\mathbf{v}) &< r(\mathbf{w}), \, \mathbf{w} \, \in \, \mathsf{N}(\mathbf{v}) \\ \text{and} \\ r(\mathbf{v}) &< r(\mathbf{x}), \, \mathbf{x} \, \in \, \mathsf{N}(\mathbf{w}) \end{aligned}$

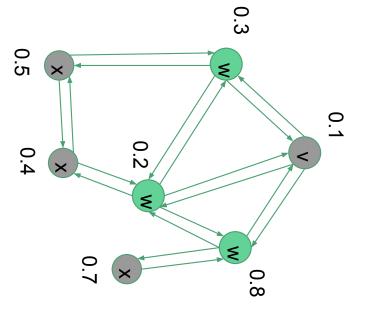
occurs with prob. at least 1 / (d(v) + d(w))

Pr(Event (v + w)) = 1 / (d(v) + d(w))

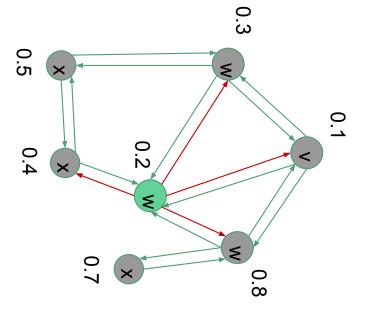
Pr(Event (w + v)) = 1 / (d(w) + d(v))



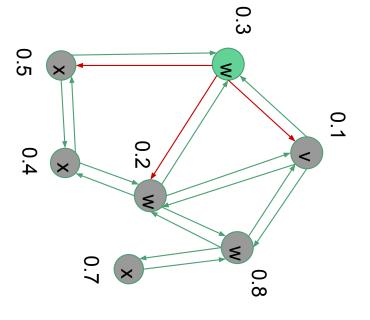
the event (v \rightarrow w) occurs? d(w) edges How many directed edges are removed when



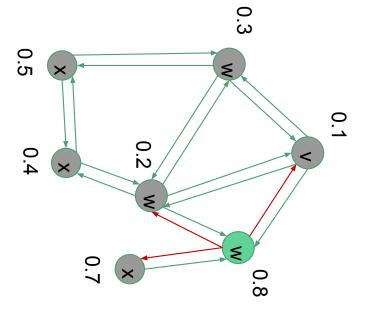
the event (v \rightarrow w) occurs? at least d(w) edges How many directed edges are removed when



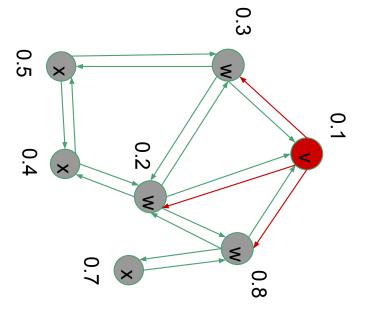
the event (v \rightarrow w) occurs? at least d(w) edges How many directed edges are removed when



the event (v \rightarrow w) occurs? at least d(w) edges How many directed edges are removed when



the event (v \rightarrow w) occurs? at least d(w) edges How many directed edges are removed when

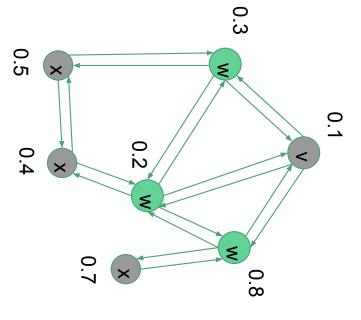


the event ($v \rightarrow w$) occurs? at least d(w) edges How many directed edges are removed when

And for (w \rightarrow v), d(v) edges

So if event (v \rightarrow w) occurs then X_(v \rightarrow w): d(w)

If event (w \rightarrow v) occurs then X_(w \rightarrow v): d(v)



$$\mathsf{E}[\mathsf{X}] \qquad = \Sigma_{\{\mathsf{V}, \ \mathsf{W}\}} \in {}_{\mathsf{E}} \; \mathsf{E}[\mathsf{X}_{(\mathsf{V} > \mathsf{W})}] + \mathsf{E}[\mathsf{X}_{(\mathsf{W} > \mathsf{V})}]$$

$$= \Sigma_{\{v, w\} \in E} d(w) \square Pr[Event (v->w)] + d(v) \square Pr[Event (w->v)]$$

$$\begin{split} \text{M} & \text{\acute{e}tivier et al. 2010 - Proof} \\ \text{E}[X] &= \Sigma_{[v, w] \in E} E[X_{(v \rightarrow w)}] + E[X_{(w \rightarrow v)}] \\ &= \Sigma_{[v, w] \in E} d(w) | Pr[Event (v \rightarrow w)] + d(v) | Pr[Event (w \rightarrow v)] \\ &= \Sigma_{[v, w] \in E} d(w) / (d(v) + d(w)) + d(v) / (d(v) + d(w)) \\ &= \Sigma_{[v, w] \in E} d(v) + d(w) / (d(v) + d(w)) \\ &= \Sigma_{[v, w] \in E} 1 \end{split}$$

$$\mathsf{E}[\mathsf{X}] \qquad = \mathsf{\Sigma}_{\{\mathsf{v}, \ \mathsf{w}\}} \in {}_{\mathsf{E}}\mathsf{1} \quad = |\mathsf{E}|$$

undirected graph. But we counted twice as many edges in the directed graph as in the

Therefore at least IEI / 2 edges are removed each iteration.

Remarks

Usable in distributed computing or in multicore environments

Open question as to can we do better

References
M. Luby, A simple parallel algorithm for the maximal independent set problem, Proc, 17th ACM Symposium on Theory of Computing, 1985, pp. 1-10
Métivier, Y.; Robson, J. M.; Saheb-Djahromi, N.; Zemmari, A. (2010). "An optimal bit complexity randomized distributed MIS algorithm". Distributed Computing 23 (5–6): 331.
https://en.wikipedia.org/wiki/Maximal_independent_set
"Principles of Distributed Computing" ETH Zurich. Retrieved 21 February 2015
Gallai, T. "Über extreme Punkt- und Kantenmengen." <i>Ann. Univ. Sci. Budapest, Eőtvős Sect. Math.</i> 2 , 133- 138, 1959
Kőnig, Dénes (1931), "Gráfok és mátrixok", Matematikai és Fizikai Lapok 38 : 116–119