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Maximal Independent Set (MIS)

- Not subset of any independent set
- Each edge has an endpointnotin S
- Each vertexis in S or has at least 1 neighbor in S
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Relationship with Similar Problems

MIS Maximal Clique




Relationship with Similar Problems

MIS Minimal Vertex Cover

[Gallai 1959]
—_—

(S, E) = (V/S,E)=




Relationship with Similar Problems

Max IS for
Bipartite Graph

Maximum Matching
for Bipartite Graph

to vertex cover + to
maximum matching

[Konig 1931]
.
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Finding a MIS of G

SequentialMIS(G = (V, E))
1. LetS=9

2. While(V # 9)

3 Arbitrarily selectv € V
4, S=S Uv

5 V=V\(v U N(V)

6. Output$S
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Finding a MIS of G

SequentialMIS(G = (V, E))
1. LetS=9

2. While(V # 9)

3 Arbitrarily selectv € V
4, S=S Uwv

5 V=V\(v U N(V)
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Finding a MIS of G

SequentialMIS(G = (V, E))

1. LetS=9

2. While(V # 9)

3 Arbitrarily selectv € V
4, S=S Uv

5 V=V\(v U N(V)

6. Output$S

Runtime:
O(n)

Memory:
O(n)



Luby 1986

ParallelMIS(G = (V, E))

1. LetS=9

2. While(V # 9)

3. For each v € V add it to S with probability 1/2d(v)

4, For each e € E, if both endpoints are in S, then remove the
endpoint with lower degree (break ties lexicographically, etc.)

o. V=V\(S U N())

7. Output S



Luby 1986

deg 1

deg 1
Each edge becomes a
directed edge towards the
vertex with the higher degree

deg 3 deg 1

deg 2




Luby 1986 o

deg 1
A vertex v is bad if:
>2/3 of N(v) is higher
An edge is bad if: deg 3 deg 1
both endpoints are bad

deg 2




Luby 1986 -

bad
A vertex v is bad if;

>2/3 of N(v) is higher

bad
bad

An edge is bad if:

both endpoints are bad
bad

bad



Luby 1986 - Outline

- Show that at least 1/2 of edges are always ‘good’
- A good node has a constant prob. of being added to S
- S0, every good edge has a constant prob. of being removed

- Half the edges are good, therefore |El drops by a constant factor
each iteration



Métivier et al. 2010

ParalleIMIS2(G = (V, E))

1.

2.
3.

6.

LetS =9
While(V # 9)
For each v & V select a random number r(v) in [0, 1] and send it
to its neighbors, u & N(v)
If r(v) <r(u), add v to S and inform its neighbors
If vis added, remove v and N(v) from V
Output S



Métivier et al. 2010 - Properties

- Ifvisaddedto S, then u & N(v) is prevented from being added to S

- The vertex with the smallest value(s) during each iteration joins S, thus
removing vertices from V until it becomes @

- In each iteration, half the edges are removed, so the expected runtime
is O(logn)



Métivier et al. 2010 - Outline

0.1
- Split each edge (v, w) € E into 2 directed

edges: (v, w) and (w, V)
- Define an event when a vertex is 0.3
removed

0.8

- Using linear expectation,

E[> X]=2 E[X], show that in expectation 07
that a constant fraction of edges are |

removed 0.5 0.4

0.2




Métivier et al. 2010 - Proof

- Split each edge (v, w) € E into 2 directed
edges: (v, w) and (w, V)




Métivier et al. 2010 - Proof

- Define an event when a vertex is
removed
Given an ordered vertex pair (v, w), define the
event (v = w):
r(v) <r(w), w & N(v)
and
r(v) < r(x), x & N(w)
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occurs with prob. at least 1/ (d(v) + d(w))
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Métivier et al. 2010 - Proof

r(v) <r(w), w & N(v)

and

r(v) < r(x), x & N(w)

occurs with prob. at least 1/ (d(v) + d(w))

Pr(Event (v » w)) =1/ (d(v) + d(w))

Pr(Event (w » v)) =1/ (d(w) + d(v))
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And for (w = v), d(v) edges
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Métivier et al. 2010 - Proof

How many directed edges are removed when
the event (v » w) occurs? at least d(w) edges

And for (w = v), d(v) edges

:d(w)

va>w)

So if event (v » w) occurs then XA

: d(v)

w = V)

If event (w = v) occurs then XA



Métivier et al. 2010 - Proof

EX] =% E[X,,..,] + EIX,

(v, w} € E (v->w <<-v<vu_

=2 d(w) O Pr[Event (v->w)] + d(v) [ Pr[Event (w->V)]

(v, w} = E



Métivier et al. 2010 - Proof

E[X] =% E[X,,.,,] + EIX

(v, w} € E A<-V<<v”_ <<-v<vu_

=2 d(w) O Pr[Event (v->w)] + d(v) [ Pr[Event (w->V)]

(v, w} = E

= d(w) / (d(v) + d(w)) + d(v) / (d(v) + d(w))

(v, w} € E

=2 d(v) + d(w) / (d(v) + d(w))

(v, w} € E

=> 1

{v,w} = E



Métivier et al. 2010 - Proof

E[X] =2 1 =IEl

{v,w} € E

But we counted twice as many edges in the directed graph as in the
undirected graph.

Therefore at least |[El / 2 edges are removed each iteration.



Remarks

Usable in distributed computing or in multicore environments

Open question as to can we do better
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