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P
arallelM

IS
(G

 = (V
, E))

1.
Let S = ∅

2.
W

hile(V
 ≠ ∅)

3.
For each v ∈

 V
 add it to S w

ith probability 1/2d(v)
4.

For each e ∈
 E, if both endpoints are in S, then rem

ove the 
endpoint w

ith low
er degree (break ties lexicographically, etc.)

6
.

V
 = V

 \ (S ∪
 N

(S))
7.

O
utput S
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A
 vertex v is bad if:

>2/3 of N
(v) is higher 

A
n edge is bad if:

both endpoints are bad
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 - O
utline

-
Show

 that at least 1/2 of edges are alw
ays ‘good’

-
A

 good node has a constant prob. of being added to S

-
So, every good edge has a constant prob. of being rem

oved

-
H

alf the edges are good, therefore |E| drops by a constant factor 
each iteration



M
étivier et al. 20

10

P
arallelM

IS
2

(G
 = (V

, E))
1.

Let S = ∅
2.

W
hile(V

 ≠ ∅)
3.

For each v ∈
 V

 select a random
 num

ber r(v) in [0
, 1] and send it

to its neighbors, u ∈
 N

(v)
4.

If r(v) < r(u), add v to S and inform
 its neighbors

5
.

If v is added, rem
ove v and N

(v) from
 V

6
.

O
utput S
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-
If v is added to S, then u ∈

 N
(v) is prevented from

 being added to S

-
The vertex w

ith the sm
allest value(s) during each iteration joins S, thus 

rem
oving vertices from

 V
 until it becom

es ∅

-
In each iteration, half the edges are rem

oved, so the expected runtim
e 

is O
(logn)
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utline

-
Split each edge (v, w

) ∈
 E into 2 directed 

edges: (v, w
) and (w

, v)
-

D
efine an event w

hen a vertex is 
rem

oved
-

U
sing linear expectation, 

E [∑
i  X

i ] = ∑
i E[X

i ], show
 that in expectation 

that a constant fraction of edges are 
rem

oved

0.2

0.3

0.1

0.8

0.4
0.5

0.7
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Split each edge (v, w

) ∈
 E into 2 directed 

edges: (v, w
) and (w

, v)
0.3

0.1

0.8

0.4
0.5

0.7
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-
D

efine an event w
hen a vertex is 

rem
oved

G
iven an ordered vertex pair (v, w

), define the 
event (v → w

):
r(v)

< r(w
), w

 ∈
 N

(v) 
and 
r(v) < r(x), x ∈

 N
(w

)
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H
ow

 m
any directed edges are rem

oved w
hen 

the event (v → w
) occurs? at least d(w

) edges

A
nd for (w

 → v), d(v) edges

So if event (v → w
) occurs then X

(v → w
) : d(w

)

If event (w
 → v) occurs then X

(w
 → v) : d(v)
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E[X
]

= ∑
{v, w

} ∈
 E  E[X

(v->w
) ] + E[X

(w
->v) ]

= ∑
{v, w

} ∈
 E  d(w

) �
 Pr[Event (v->w

)] + d(v) �
 Pr[Event (w

->v)]

M
étivier et al. 20

10
 - Proof



E[X
]

= ∑
{v, w

} ∈
 E  E[X

(v->w
) ] + E[X

(w
->v) ]

= ∑
{v, w

} ∈
 E  d(w

) �
 Pr[Event (v->w

)] + d(v) �
 Pr[Event (w

->v)]

= ∑
{v, w

} ∈
 E  d(w

) / (d(v) + d(w
)) + d(v) / (d(v) + d(w

))

= ∑
{v, w

} ∈
 E  d(v) + d(w

) / (d(v) + d(w
)) 

= ∑
{v, w

} ∈
 E 1

M
étivier et al. 20

10
 - Proof



E[X
]

= ∑
{v, w

} ∈
 E 1 

= |E|

B
ut w

e counted tw
ice as m

any edges in the directed graph as in the 
undirected graph. 

Therefore at least |E| / 2 edges are rem
oved each iteration.

M
étivier et al. 20

10
 - Proof
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arks

U
sable in distributed com

puting or in m
ulticore environm

ents

O
pen question as to can w

e do better
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