
Succinct Data Structures

Craig Dillabaugh

October 9, 2007

1 Introduction

The paper reviewed here by Guy Jacobson [2] describes space e�cient rep-
resentations of static trees and graphs that nevertheless allow for e�cient
operations such as accessing the child of a node in a tree or determining the
neighbours of a node in a graph. In particular we will examine space e�cient
(succinct) structures for binary trees, general trees, outer-planar graphs, and
general planar graphs.

2 Problem Statement

Data structures for trees and graphs often use pointers to represent links
(edges) between vertices or nodes. This representation is very e�cient in
terms of allowing rapid traversal of these data structures but it is not space
optimal since each pointer must address one of n memory locations and thus
requires log n bits. In total we need O(n log n) bits to store the n pointers
in a binary tree in comparison to the theoretical bound of 2n + o(n) = O(n)
bits to represent such trees. The goal of this research is to represent data
structures using approximately the theoretical bound on space occupancy
while at the same time supporting e�cient O(log n) bit accesses traversal
operations such as �nding the parent or child of a node.

3 Techniques

3.1 Rank and Select

Operations in the data structures that follow rely on e�ciently performing
the operations Rank1(m), Rank0(m), Select1(m), and Select0(m) on a bit
vector B. The subscript value 0 or 1 simply indicates whether the operation is

1

performed on the 1's or 0's in the vector. Here we will describe the operations
in terms of the '1' values as the same operations on zero values are roughly
analogous.

Rank1(m) returns the number of '1's in B up to the position B[i].
Select1(m) returns the index in B of the i′th 1. Consider for example the
bit array B in Fig.1. If indexing starts from zero then Rank1(5) = 4 since
up to position B[5] we have a total of four 1's in B. Select1(3) = 4 since to
select the �rst three 1's we must go up to index B[4].

Both queries can be answered by scanning B but this requires O(n) time
which is very poor. Jacobsen's paper mentions that both operations can be
accomplished in O(log n) bit access which corresponds to O(1) operations
in the standard RAM model, however the paper omits the details. The de-
scription that follows, which details how Rank1(m) is implemented is based
on [1]. The Select operation can be performed using a similar technique also
achieving the O(1) bound, but the description of this method too lengthy to
be included here.

The data structures, or directories, required to provide the constant time
operations are shown in Fig. 1. First we conceptually divide B into blocks of
size (log n)2 and store in the array F a value for each block that corresponds
to the rank of the last element in the previous block. The array F must store

n
(log n)2

elements requiring up to log n bits for a total storage requirement of
n

(log n)2
· log n = n

log n .

Next we subdivide B conceptually into sub-blocks of size log n. Each
group of log n sub-blocks corresponds to a single block. In a manner similar
to that for the blocks we store in each element of the sub-block array S
the rank of the last element in the previous sub-block, however counting is
restarted at each block boundary. Thus sub-blocks indicate ranks of positions
within the blocks. While the array S stores a total of n

logn items, each item
must record a value of size at most log n and thus requires log log n bits,
giving S a total space requirement of n log log n

logn .
Finally the array C is created. This array stores for all bit vectors of size

log n
2 the rank at each position. As there are only

√
n bit vectors of length

log n
2 all possible rankings can be computed and stored in a

√
n× log n

2 array.
The total number of bits required for this data structure is

√
n·log n·log log n.

With these three auxilliary data structures the query Rank1(m) can be
solved as follows. We simply look up the the values for the block and sub-
block to which m belongs in the F and S arrays respectively, adding the
sub-block starting value to that of the block gives the cumulative rank up
to the start of the sub-block. Recall that sub-blocks are of length log n so

2

Figure 1: A bit vector B and associated data structures required to answer
Rank in O(1) time.

the sub-block is divided into two bit-vectors of length log n
2 . These values are

used directly as row indicies for the array C and we can thus determine with
just two more look ups (at most) the rank within the sub-block of m. In
total we require four look-ups and the additions to calculate the �nal rank
and as such Rank1(m) is performed in constant time.

3.2 Parentheses Balancing

Given a string, |S| = n of balanced parentheses we wish to implement the
function Find(p), which given p, the position of an open or close parenthesis
in S, returns the position of q, the close or open parenthesis that matches
p. In the description that follows assume p is an open parenthesis and q
is a close parenthesis, searching in the other direction is exactly the inverse
operation and is implemented in the same manner.

Obviously such queries could be answered trivially if we allowed O(n log n)
bits of storage, as we could simply store for each p a pointer to q. However the
data structure and operations described here will support Find(p) e�ciently
with just O(n) bits of storage.

As was done for rank and select, S is split into b = n
log n blocks of size

3

Figure 2: A string S of parentheses divided into blocks of size log n(= 4)
and with matching parentheses indicated.

log n. Next we will de�ne two special types of parenthesis. A far open
parenthesis has its matching close parenthesis lying in another block. A
pioneer parenthesis is a far parenthesis that has its matching parenthesis
lying in a di�erent block than that of the previous far parenthesis in S (see
Fig. 2).

In order to support e�cient matching we create the following additional
tables (also depicted in Fig. 2). First we create a Pioneer bitmap which
records the position of each pioneer in S, a directory is also built on this
structure to support e�cient rank and select. The second structure employed
is the Pioneer Matches table which stores for each pioneer parenthesis the
block of its matching parenthesis. The third structure stores for each block
the nesting depth of that block where nesting depth is the excess of open
over close parenthesis in S up to the start of the block.

To �nd the matching parenthesis q we can perform a linear scan on B if
p is not a far parenthesis as this will require at most log n bit accesses. If p
is a far parenthesis then �nding q involves the following steps:

1. Compute Rank1(p) in the Pioneers bitmap.

2. Use the result of Rank1(p) as the index into the Pioneer Matches table
to determine the block containing p's match.

3. Use the Nesting Depth table to determine the nesting depth at the start
of the blocks containing p (bp) and q (bq) respectively. From these we
can use linear scan to determine the nesting depth of p in bp and then
scan bq to �nd the bracket with matching nesting depth, which is q.

4

Finally, lets consider the space required by the various structures used in
the bracket matching process. The bitmap of pioneers requires n bits while
the associated ranking directory requires o(n) bits. For the nesting depth
array we have n

log n elements which store a value of size log n so this array
requires n bits. For the Pioneer Matches array we store values of size at most
log n bits. Theorem 1 shows that the length of the Pioneer Matches array
does not exceed 2b− 3, so we have in total (2(n

log n)− 3) · log n = 2n + o(n)
bits.

Theorem 1: The number of pioneer parenthesis in a balanced string
divided into b blocks is at most 2b− 3.

Proof : Consider each block required to store the string S as if it is a
node in a graph G. Arrange the vertices of G such that they lie on a straight
line, l in the plane. Now for each pair of nodes in G connect the nodes
with an edge if there is one or more far parentheses that form a match in
their corresponding blocks. Draw these edges in the plane above l. Since
the edges represent matching brackets they can be drawn so that they do
not intersect. Furthermore since the edges are drawn above l it is clear that
each node in G lies on the outer face of G and thus G is outer-planar. The
number of edges in an outer-planar graph is at most 2n− 3 (where n is the
number of vertices) and as such G has at most 2b− 3 edges. Finally, as the
number of pioneer parenthesis cannot exceed the number of far parenthesis
the total number of pioneer parenthesis is bounded by this quantity.

4 Succinct Trees

4.1 Level-Order Binary Marked Tree

Binary trees can be encoded as bit strings using the following simple scheme
as depecited in Fig. 3.

1. Label each node in the tree with the value 1.

2. Add external nodes to the internal node so that each internal node has
two children. Label these external nodes with the value 0.

3. Traverse the tree from left to right in level order and read the labels
to the bit array.

This representation requires n 1 bits and n + 1 0 bits for a total of 2n + 1
bits. Each 1 bit in the bit-vector B corresponds to a node in the tree. For
the node at B[m] we can use the Rank and Select operations to locate its
children and parent as follows:

5

Figure 3: A binary tree (top). On the left hand side the same tree is shown
with external nodes (hallow squares) added and binary representations indi-
cated. Arrows indicate the order in which the nodes are visited in producing
the binary representation shown at the bottom.

left− child(m)← 2 ·Rank1(m)
right− child(m)← 2 ·Rank1(m) + 1
parent(m)← Select1(bm/2c)

By using the directory structures described in Section 3.1 we can imple-
ment each of these operations in O(log n) bit access or O(1) time. This adds
o(n) bits so we can store B and its directory in 2n + o(n) bits.

4.2 Level-Order Marked Degree Sequence Tree

For a general binary tree where nodes may have zero, one or more children
a slightly di�erent binary encoding is used for each node. We again use
level-order left to right traversal of the tree to build up the bit string but
the node encoding is a pre�x code that records a 1 for every child followed
by a single 0 bit. Thus a node with three children is encoded as '1110' while
a node with no children is encoded as '0', see Fig. 4 for examples of node
encodings and the resulting bit string.

The resulting traversal operations now become somewhat more compli-
cated, but can still be accomplished using Rank and Select as with the binary
tree.

first− child(m)← 2 · Select0(Rank1(m)) + 1
next− sibling(m)← m + 1
parent(m)← Select1(Rank0(m))

6

Figure 4: A general tree is shown with its level-order unary degree sequence
indicated for each node and the corresponding bit vector shown at the bot-
tom. The root node (hallow) is the super-root which is added to ensure that
the binary representation stores exactly one 1 per node. Note that the 1 bit
corresponding to a node in the bit vector is encoded by the node's parent.
Thus the 2nd 1 bit is part of the encoding for root node, but corresponds to
the root's �rst child as indicated by the arrow.

For the degree sequence tree described above we have n 1 bits and n + 1
zero bits if we include the super-root for a total of 2n+1 bits. Again we can
support all traversal operations in log n bit operations since they use rank
and select by adding the o(n) directory structures.

5 Succinct Graphs

Consider the class of graphs known as the bounded pagenumber graphs, which
is the class of graphs which permit k page book-embeddings. Given the graph
G(V,E) a single page embedding is an ordering, T , of all v ∈ V along a
straight line in 2d such a subset of the edges E (which are curved) can be
drawn above the line without intersecting. A book embedding divides the
set of edges E into k pages such that given the same node ordering T page
can be embedded without any edge crossings. The pagenumber of a graph
is the minimum number of pages that the graph can be embedded in. For
arbitrary graphs �nding the pagenumber is NP-Complete [3].

5.1 Succinct Single Page Graphs

We will �rst consider the takes where k = 1 and G can be embedded on a
single page. Such a graph is outer-planar. Fig. 5 shows the outer-planar
graph G and the set of structures used in its succinct representation. First

7

we see the arrangement of the nodes of G for the page embedding of G. Note
that with this representation the nesting of edges corresponds to a string of
balanced parentheses. We generate a set of balanced parentheses for the
nodes of G using a 3 symbol alphabet starting with a • for each node. Then
for each edge (u, v) ∈ G we add a open parenthesis '(' immediately before
node u + 1 and a close parenthesis immediately after node v. The resulting
string has at most n node symbols and 2n− 3 brackets.

Next the node map is generated. This is a bit vector with a 1 bit corre-
sponding to each node and a 0 bit corresponding to each parenthesis (open
or close) in the string of balanced parentheses, and �nally we remove the
node symbols (•) from the string of parentheses and create a bit vector for
the parentheses. The node map and parenthesis bit-vector used O(n) space,
including the directories to enable e�cient rank and select and parenthesis
matching.

To perform searches on G we de�ne two basic operations both of which
are performed on the node map. The �rst of these is node-to-edge operation
which converts a node number into the index of the �rst edge out of that
node. Node-to-edge is calculated as; node−to−edge(m) = Rank0(Select1(m)+
1). The second operation is the edge-to-node which given the position of one
of the edge parentheses in the parenthesis string returns the number of the
node adjacent to that edge. Edge-to-node is calculated as: edge − to −
node(e) = Rank1(Select0(e)).

Given these simple operations we can visit the neighbours of node m in
constant O(log n) time with the following algorithm:

e ← node-to-edge(m)
while edge-to-node(e) = m
e' ← paren-match(e)
visit edge-to-node(e'))
e ← e + 1

This algorithm performs a constant number of rank, select, and parenthe-
sis matching operations, per neighbour, and can therefore operate in O(log n)
time per neighbor visited.

5.2 Multipage Graphs

For graphs that cannot be embedded in a single page the graph is embedded
in k pages, and each page is represented seperately. Operations described for

8

Figure 5: An outer-planar graph G(V,E) and the corresponding structures
used in generating and representing its succinct representation.

9

single page graphs must simply be executed for each of the k pages. Since
single pages can be represented in O(n) bits a k page graph requires O(kn)
bits. Searching and adjacency testing is performed in k log n bits.

6 Summary

Jacobsen's paper is was not the �rst attempt at representing common data
structures such as graphs and trees in a succinct manner. However, the key
innovation presented in the paper was the e�cient traversal operations in
such structures. Techniques such as rank and select and parenthesis match-
ing form fundamental operations in current research into succinct data struc-
tures.

7 Questions and Answers

7.1 Questions

1. Given a outer-planar graph G = (V,E) describe an algorithm that
produces a valid page embedding of the graph.

2. Consider the parenthesis balancing routine outlined in the Jacobsen pa-
per. The paper claims if we know the nesting depth of open parenthesis
p and the block to which its matching close parenthesis q belongs, we
can scan the block bq to �nd a parenthesis of matching nesting depth
and that this parenthesis will be q. Prove that this is indeed the case
and that there cannot be some other parenthesis r in bq which has the
same nesting depth as p.

7.2 Answers

1. Start at any node v and perform a depth �rst search outputing each
node the �rst time it is visited.

2. Proof is by contradiction. Assume there is some such parenthesis r.
Since parenthesis are balanced then r which is a close parenthesis and
must be matched by some open parenthesis (lets call it s) that appears
somewhere in the string after p. The nesting depth of s must be greater
than that of p or else p would have matched some parenthesis prior to
s. However we have claimed that nesting depth r = s = p which is a
contradiction.

10

References

[1] Eppstein, D.: Separating Thickness from Geometric Thickness, Web
page: [http://www.ics.uci.edu/ eppstein/pubs/Epp-GD-02-slides.pdf],
2002.

[2] Jacobson, E.: Space-e�cient Static Trees and Graphs, FOCS, 42,
(1989), 549-554.

[3] Makinen, V. and Schurmann, KB: Data Structure Com-
pression, Web page: [http://gi.cebitec.uni-bielefeld.de/ teach-
ing/2005summer/datacomp/ dcsummer05 partII.pdf], 2005.

11

