
Treewidth
Kimberly Crosbie

1 Introduction

The notion of treewidth is a powerful tool for solving graph theoretic problems. Treewidth
generalizes the property of having small seperators. Intuitively, treewidth represents how
“tree-like” a given graph is. Many problems that are NP-hard on general graphs can be
solved in polynomial time for graphs with small treewidth. In this paper we will intro-
duce the concepts of tree-decomposition and treewidth. Section 3 shows how problems that
are NP-hard in general can be solved in polynomial time using tree-decopositions of small
width, if the graph has bounded treewidth. Specifically, we detail an efficient algorithm
for finding the size of the maximum independent set on a graph with bounded treewidth
using a tree-decomposition. Finally, section 4 explains the problem of finding treewidth and
tree-decompositions and summerizes some known results.

2 Definitions

We will now formally define important terms and give a few examples.

A tree decomposition of a graph G = (V,E) is a tree T = (I, F), where each node i ∈ I
has a label Xi ⊆ V such that:

•
⋃

i∈I Xi = V , or equivalently, every vertex v ∈ V is contained in at least one label

• for any edge (u, v) ∈ G, there exists an i ∈ I with u, v ∈ Xi

• for any v ∈ V , the vertices containing v in their label form a connected subtree of T ,
or equivalently, i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj

To minimize confusion, common practice is to refer to v as a vertex when v ∈ V and to
refer to the nodes of T .

The width of a tree-decomposition ({Xi|i ∈ I}, T = (I, F))is maxi∈I |Xi| − 1. The
treewidth of a graph G is the minimum width over all possible tree decompositions of G.

We use figure 1 as an example graph. Figure 2 gives an example of a tree-decomposition
of the graph G that has width 3. Figure 3 gives an example of a tree-decomposition of G
that has width 2, which is the treewdith of G. The colouring in figures 2 and 3 has been
added for ease of understanding.

We can now make a few general observations. First of all, for any graph G = (V,E), we
always have a tree-decomposition, ({Xi|i ∈ I}, T = (I, F)), with a single node i ∈ I, that

1

A

B

C D

E F G

Figure 1: An example graph G with treewidth 2

A

B

C D

E F G

A, B

C, E, F B, C, D, F D, F, G

Figure 2: Graph G and a tree-decomposition of G with width 3

has a label Xi that contains all of the vertices in V . Such a tree-decomposition has width
n − 1. Next, we observe that if a graph is a tree or forest then it has treewidth 1. On the
other hand, the complete graph Kn, has tree width n− 1.

3 Algorithms with Bounded Treewidth

One of the nice properties of treewidth is that many graph problems that are NP-hard in the
general case become easier to solve on graphs with small treewidth. In fact, many problems
can be solved in polynomial time on graphs with small treewidth.

3.1 Maximum Independent Set

We now consider the problem of finding the size of the maximum independent set. In the
general case, this problem is known to be NP-Complete [19]. However, if we are given a
tree-decomposition of the graph where its treewidth is bounded by some constant k, then

2

A

B

C D

E F G

A, B B, C, D

C, E, F C, D, F D, F, G

Figure 3: Graph G and a tree-decomposition of G with width 2

we can solve the problem in polynomial time.

As a reminder, the maximum independent set problem is as follows:
Given a graph G = (V,E), we are looking for the maximum size of a set W ⊆ G such that
for all u, v ∈ W , the edge uv /∈ E.

We will present Bodlaender’s algorithm [6] to solve the problem by using dynamic pro-
gramming.
Given a tree-decomposition of the graph G with treewidth k, it is easy to form another
tree-decomposition, with treewidth k, that is a rooted binary tree. Suppose we have such a
tree-decomposition {Xi | i ∈ I}, T = (I, F) where r is the root of T . Then for each i ∈ I,
we define Yi = {v ∈ Xj | j = i or j is a descendent of i}. Let G[Yi] be the subgraph of G
induced by the vertices of Yi.

While building the algorithm, the key observation is that when we have an independent
set W of G[Yi] and want to extend that to an independent set of the full graph G we only
need to know what vertices of Xi that belong to W . We need not consider what vertices of
Yi − Xi are in W , we only need to know their number. This follows from the definition of
tree-decomposition.

For i ∈ I, Z ⊆ Xi, define Si(Z) to be the maximum size of an independent set W in
G[Yi] with W ∩Xi = Z. If no such set exists, we set Si(Z) = −∞.

By using dynamic programming, our algorithm solves the probelm by computing all ta-
bles of Si for all nodes i ∈ I. We solve this problem in a bottom-up fashion by computing
the tables of Si after the tables for i’s children have been computed.

To start, we compute the tables for each leaf node. For a leaf node i, we compute all
2|Xi| values in the table Si by using the following formula:

3

Si(Z) =

{
|Z| if ∀ u, v ∈ Z : uv /∈ E

−∞ if ∃ u, v ∈ Z : uv ∈ E

For an internal node i with children j and k, we compute Si using the following formula:

Si(Z) =


max{Sj(Z

′) + Sk(Z ′′) + |Z ∩ (Xi −Xj −Xk)| − |Z ∩Xj ∩Xk|
|Z ∩Xj = Z ′ ∩Xi and Z ∩Xk = Z ′′ ∩Xi} if ∀ u, v ∈ Z : uv /∈ E

−∞ if ∃ u, v ∈ Z : uv ∈ E

Intuitively, the idea for the previous formula is, we take the maximum over all sets Z ′

and Z ′′ where the sets Z and Z ′ ⊆ Xj agree on which of their common elements are included
in the maximum independent set and, similarly, Z and Z ′′ ⊆ Xk agree on which of their
common elements are included in the maximum independent set. The vertices in Z that are
in Xi, but not Xj, nor Xk have not yet been counted, so we add |Z ∩ (Xi −Xj −Xk)|. The
vertices in Z ∩Xj ∩Xk have been counted twice, hence we must subtract their number once.

For each node i ∈ I we compute the table Si in bottom-up order until we have computed
the table Sr. Now, we can easily find the size of the maximum independent set of the graph
G by taking maxZ⊆XrSr(Z). Therefore, we can solve the problem in O(23kn) time.

3.2 Monadic Second Order Logic

Interestingly, it has been proven that for a large class of problems, there is a linear time
algorithm to solve a problem from the class if a tree-decomposition with constant bounded
treewidth is provided. Specifically, Courcelle’s results [17][15][16], which were extened by
Borie et al. [12], Arnborg et al. [3] and Courcelle and Mosbah [18], state that if a graph
problem can be expressed in monadic second order logic, then it can be solved in linear time
on graphs with bounded treewidth. Monadic second order logic is a language to describe
graph properties that uses the following constructions: logic operations (∧,∨,¬,⇒), mem-
bership tests (e.g, e ∈ E, v ∈ V), quantifications over vertices, edges, sets of vertices, sets of
edges (e.g., ∀v ∈ V , ∃e ∈ E, ∃I ⊆ V , ∀F ⊆ E), adjacency tests (u is an endpoint of e), and
some extensions that allow for things such as optimization.

For example, take the 3-colouring problem for graphs. For a graph G = (V,E), this
problem asks if it is possible to assign each vertex v ∈ V one of the 3 colours such that
no two adjacent vertices are assigned the same colour. This problem can be expressed in
monadic second order logic as follows:
∃W1 ⊆ V : ∃W2 ⊆ V : ∃W3 ⊆ V : ∀v ∈ V : (v ∈ W1 ∨ v ∈ W2 ∨ v ∈ W3) ∧ ∀v ∈ V : ∀w ∈
W : (v, w) ∈ E ⇒ (¬(v ∈ W1 ∧ w ∈ W1) ∧ ¬(v ∈ W2 ∧ w ∈ W2) ∧ ¬(v ∈ W3 ∧ w ∈ W3)),
where W1,W2,W3 represent the subsets of vertices having each of the 3 colours. Therefore,
by Courcelle’s results, the 3-colouring problem can be solved in linear time for a graph given
a tree-decomposition of bounded constant treewidth.

4

4 Finding Tree-decompositions

In this section, we summarize the results known for the problem of finding the treewidth of
a graph and finding tree-decompositions.

4.1 Finding Treewidth

Given a graph G = (V,E) and an integer k, the problem to determine if the treewidth of G is
at most k had be proven to be NP-complete [2]. However, for some special classes of graphs,
the treewidth can be computed in polynomial time (see for example, [22], [23], [21], [24]).
Additionally, it has been shown that this problem is NP-complete some special classes (e.g.
graphs with maximum degree at most 9 [11]; see also [20]). An interesting open problem
is if this problem is NP-Complete for planar graphs. Table 1 [14] gives an overview of the
current results for many classes of graphs.

Class Complexity
Tree/Forest Constant

Series-parallel graph Constant
Outerplanar graph Constant
k-Outerplanar graph Constant

Hanlin graph Constant
Chordal graph Polynomial

Starlike chordal graph Polynomial
k-Starlike chordal graph Polynomial

Co-chordal graph Polynomial
Split graph Polynomial

Permutation graph Polynomial
Circular permutation graph Polynomial

Cograph Polynomial
Chordal bipartite graph Polynomial

Interval graph Polynomial
Circular arc graph Polynomial

Distance hereditary graph Polynomial
Bounded Degree NP-complete
Bipartite graph NP-complete

Cocomparability graph NP-complete
Planar graph open

Table 1: Complexity status for some classes of graphs

5

4.2 Approximation Algorithms

The first approximation algorithm for finding a tree-decompostion was a polynomial time
approximation algorithm that returns a tree-decomposition with width at most O(log n)
times the optimal treewidth [10]. More recently, an approximation algorithm that gives a
tree-decomposition of width at most O(k log k), where k is the treewidth of the input graph
was presented [13].

If k is constant, then we have the result that there exists an O(n log n) algorithm, that
given a graph G = (V,E), either outputs that the treewidth of G is larger than k or outputs
a tree-decomposition of G with treewidth at most 3k + 2 (see [25], [6] for more details).
Recently, an algorithm with runtime O(ckn) was presented [9]. The algorithm either out-
puts that the treewidth of G is larger than k or outputs a tree-decomposition of G with
treewidth at most 5k + 4. This algorithm is the first algorithm that gives a constant factor
approximation for treewidth and runs in single-exponential in k and linear in n time.

5 Bibliographic Notes

Treewidth was first introduced by Robertson and Seymour [27]. At the same time, Arnborg
and Proskurowski [1][4][5] were doing work on partial k-trees, which are equivalent to graphs
that treewidth k. Many equivelent notions of treewidth exist; for an overview see [8]. A
concept closely related to treewidth is pathwidth, which was first intoduced by Robertson
and Seymour [26]. [6], [14] and [7] provide indepth surveys of results and concepts related
to treewidth. The algorithm presented in section 3 was taken from [6]. Table 1 was taken
from [14].

6 Exercises

1) From the definition of tree-decompostion, prove that the following two statements are
equivalent:
• for any v ∈ V , the vertices containing v in their label form a connected subtree of T
• for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj

2) a) Prove that a forest has treewdith 1.
b) Prove that the complete graph Kn has treewidth n− 1.

3) Given a graph G = (V,E) with treewidth k, and a tree-decompoisiton {Xi | i ∈ I}, T =
(I, F) of G with width k, give an efficent algorithm that outputs a maximum independent
set V ′ ⊆ V of G.

6

References

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded
decomposabilitya survey. BIT Numerical Mathematics, 25(1):1–23, 1985.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in
ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
Journal of Algorithms, 12(2):308–340, 1991.

[4] S. Arnborg and A. Proskurowski. Characterization and recognition of partial k-trees.
Congr. Numer, 47:69–75, 1985.

[5] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees.
SIAM Journal on Algebraic Discrete Methods, 7(2):305–314, 1986.

[6] H. L. Bodlaender. A tourist guide through treewidth. Acta cybernetica, 11(1-2):1, 1994.

[7] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. Springer, 1997.

[8] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
computer science, 209(1):1–45, 1998.

[9] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and
M. Pilipczuk. An o (cˆ kn) 5-approximation algorithm for treewidth. In Foundations
of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 499–508.
IEEE, 2013.

[10] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms,
18(2):238–255, 1995.

[11] H. L. Bodlaender and D. M. Thilikosz. Treewidth and small separators for graphs with
small chordality. 1995.

[12] R. B. Borie, R. G. Parker, and C. A. Tovey. Deterministic dcomposition of recursive
graph classes. SIAM Journal on Discrete Mathematics, 4(4):481–501, 1991.

[13] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations.
Discrete Applied Mathematics, 136(2):183–196, 2004.

[14] D. Bronner and B. Ries. An introduction to treewidth. Technical report, 2006.

[15] B. Courcelle. Graph rewriting: An algebraic and logic approach. Handbook of theoretical
computer science, pages 194–242, 1990.

7

[16] B. Courcelle. Graph grammars, monadic second-order logic and the theory of graph
minors. Contemporary Mathematics, 147:565–565, 1993.

[17] B. Courcelle. The monadic second order logic of graphs vi: On several representations
of graphs by relational structures. Discrete Applied Mathematics, 54(2):117–149, 1994.

[18] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science, 109(1):49–82, 1993.

[19] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to np-
completeness, 1979.

[20] M. Habib and R. H. Möhring. Treewidth of cocomparability graphs and a new order-
theoretic parameter. Order, 11(1):47–60, 1994.

[21] T. Kloks. Treewidth of circle graphs. Springer, 1993.

[22] T. Kloks, H. L. Bodlaender, et al. On the treewidth and pathwidth of permutation graphs.
Department of Computer Science, Utrecht University, 1992.

[23] T. Kloks, H. L. Bodlaender, et al. Only few graphs have bounded treewidth. Department
of Computer Science, Utrecht University, 1992.

[24] T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. Journal of Algorithms,
19(2):266–281, 1995.

[25] B. A. Reed. Finding approximate separators and computing tree width quickly. In
Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages
221–228. ACM, 1992.

[26] N. Robertson and P. D. Seymour. Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983.

[27] N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

8

