
Well-separated pair decomposition and t-spanners

Frédérik Paradis - University of Ottawa - fpara058@uottawa.ca

November 2, 2015

1 Introduction

A well-separated pair decomposition (WSDP) of a point set S ⊆ Rd is a set of pairs {{A1, B1},
{A2, B2}, . . . , {Am, Bm}} such that for any distinct point p and q in S, there is a unique pair
{Ai, Bi}, 1 ≤ i ≤ m, so that p ∈ Ai and q ∈ Bi or p ∈ Bi and q ∈ Ai, and for each pair {Ai, Bi},
1 ≤ i ≤ m, Ai and Bi are well-separated. Ai and Bi are well-separated if and only if there are two
circles (d-balls) with the same radius ρ respectively enclosing Ai and Bi and the minimum distance
between the circles is sρ where s is called the separation ratio which is greater than 0. The intuition
is that the pair forms a cluster of two components. See Figure 1 for an illustration.

≥ sρ
ρ

ρ

A
B

Figure 1: Visual representation of well-separated pair

In the purpose of finding well-separated pairs, it is necessary to define the concept of bounding
box. A bounding box R(S) of a point set S is the smallest axes-parallel d-dimensional hyperrectangle
containing S. An axes-parallel d-dimensional hyperrectangle, or for short a hyperrectangle, is defined
as the Cartesian product of closed interval for each dimension. For a hyperrectangle R, we have
R = [l1, r1]× [l2, r2]× . . .× [ld, rd] where li ≤ ri. The length of the side in the dimension i is given
by Li(R) = ri − li. Lmax and Lmin define respectively the longest and the shortest length for all
dimension. Finally, a d-cube is a hyperrectangle such that the length of the side on each dimension
is the same.

2 The split tree

To construct a WSPD, we need to preprocess the points and obtain a data structure that will be
used to generate the WSPD. This data structure is the split tree that Callahan and Kosaraju used
in their original paper [3]. Note that it is possible to use other data structures like a quad tree as

1

used by Har-peled in [6]. We will show that it is possible to construct it in O(n log(n)) time after
having shown a simpler O(n2)-time algorithm.

The general principle of the split tree is that each node u of the tree represents a set of points
Su and that the bounding box R(Su) of Su is split along its longest side in two equal parts which
form the two children of u and their point set. It is done recursively until there is only one point in
the set. Here is the algorithm:

Algorithm 1 A basic algorithm for the split tree
function SplitTree(S)

Let u be the node for S
if |S| = 1 then

R(u) := R(S) . R(S) is a hyperrectangle which each side has a length of zero.
Store in u the only point in S.

else
Compute R(S)
Let the i-th dimension be the one where Lmax(R(s)) = Li(R(S))
Split R(S) along the i-th dimension in two same-size hyperrectangles and take the points

contained in these hyperrectangles to form the two sets Sv and Sw.
v := SplitTree(Sv)
w := SplitTree(Sw)
Store v and w as, respectively, the left and right children of u.
R(u) := R(S)

end if
return u

end function

For each node, the algorithm stores the bounding box of his associated point set and his two
child nodes or the only associated point if it is a leaf. A split tree has the n points as leaves and,
thus, has 2n − 1 nodes. Because there can exist point positions where there can be O(n) splits
which can cost O(n) for each split, this give us a worst case time of O(n2) and, thus, the split tree
can be very unbalanced.

Now that we have an algorithm for the split tree, it is time to find a more efficient one. So,
the goal is to loop over the list in only O(n) operations per step of the recursion but only call the
recursion on at most n/2 points each time. To do that, it is necessary to have sorted lists of the
points for each dimension. Once the dimension of the longest side is identified, simply walk along
the point list from the beginning and the end simultaneously and stop when one of the sides reaches
the hyperplane that separates the hyperrectangle in two. Then, call the recursion on the side that
reached the hyperplane. For the other side, repeat this until a call to the recursion can be made
with a point set of size lesser than or equal to n/2. Because each call to the recursion involves less
than or equal to n/2 points, this algorithm should run in O(n log(n)).

Let Sj
i be the j-th coordinate of the i-th point in S such that S is sorted for each dimension and

p(Sj
i) be the point. Also, let h(R(S)) = (li + ri)/2, where i is the dimension where Lmax(R(S)) =

Li(R(S)), be the hyperplane that splits the longest side of R(S) in two. Here is the algorithm in
pseudo-code:

2

Algorithm 2 An O(n log(n)) algorithm for the split tree
function SplitTree(S, u)

if |S| = 1 then
R(u) := R(S) . R(S) is a hyperrectangle which each side has a length of zero.
Store in u the only point in S.

else
size := |S|
repeat

Compute R(S)
R(u) := R(S)
j := 1
k := |S|
Let the i-th dimension be the one where Lmax(R(S)) = Li(R(S))
Sv := ∅
Sw := ∅
while Sj+1

i < h(R(S)) and Sk−1
i > h(R(S)) do

size := size− 1
Sv := Sv ∪ {p(Sj

i)}
Sw := Sw ∪ {p(Sk

i)}
j := j + 1
k := k − 1

end while
Let v and w be respectively, the left and right children of u.
if Sj+1

i > h(R(S)) then
Sw := S \ Sv
u := w
S := Sw
SplitTree(Sv, v)

else if Sk−1
i < h(R(S)) then

Sv := S \ Sw
u := v
S := Sv
SplitTree(Sw, w)

end if
until size ≤ n

2
SplitTree(S, u)

end if
end function

To be able to maintain the sorted lists for each node, linked lists are used. Cross-pointers are
kept for each list to the others to be able to retrieve a point in constant time. In the algorithm above,
in each iteration of the loop, a call to the recursion is done. In reality, to be able to reconstruct
the list without the overhead of resorting the points, it is necessary to rebuild the sorted lists once
all points have been assigned to their nodes. To do the rebuilding, walk along each list for each
dimension, add each point to the corresponding list of its nodes, and add cross-pointers in the

3

original list to be able to add the cross-pointers for the new lists. Finally, call the recursion on each
node and his set.

3 The WSPD computation

Now that we have the split tree, we can compute the WSPD. The two following functions are used
to compute the WSPD.

Algorithm 3 From two nodes u and v in the split tree that have disjoint point sets, this algorithm
finds well-separated pairs of sets so that, for each pair {A,B}, A ⊆ Sv and B ⊆ Sw.

function FindPairs(v, w)
if Sv and Sw are well-separated with respect to s then

return The set {{u, v}}
else if Lmax(R(v)) ≤ Lmax(R(w)) then

Let wl and wr be respectively the left and right children of w.
WSPD := ∅
WSPD := WSPD ∪ FindPairs(v, wl)
WSPD := WSPD ∪ FindPairs(v, wr)
return WSPD

else
Let vl and vr be respectively the left and right children of v.
WSPD := ∅
WSPD := WSPD ∪ FindPairs(vl, w)
WSPD := WSPD ∪ FindPairs(vr, w)
return WSPD

end if
end function

This algorithm will always terminate because two points are always well-separated and the
algorithm does the recursion branch where the bigger bounding box will be split. To compute the
circles separating two point sets, the bounding boxes are used. See Figure 2 for an example.

≥ sρ
ρ

ρ

A

B

Figure 2: Visual representation of a well-separated pair computed with the bounding boxes

4

Algorithm 4 From the split tree, a WSPD with respect to s is found.
function FindWSPD(T , s)

WSPD := ∅
for each node u that is not a leaf in the split tree T do

Let v and w be respectively the left and right children of u.
WSPD := WSPD ∪ FindPairs(v, w)

end for
return WSPD

end function

Proof of correctness. It is clear that the pairs returned by the algorithm are well-separated because
of the return condition of the function FindPairs.

Now, we have to prove that for any distinct points p and q in S, there is a unique pair {A,B}
so that (i) p ∈ A and q ∈ B or (ii) p ∈ B and q ∈ A. Assume without loss of generality that (i)
holds.

Let u be the lowest common ancestor of p and q in the split tree and let v and w be the children
of u. Because of the last assumption, p is in the subtree of v and q in the subtree of w. A call to
FindPairs(v, w) is necessarily done in FindWSPD. Because, each time there is a recursion, the
recursion tree creates two branches that contain all the points of the current recursion call, there
will be a sequence of call to FindPairs leading to having p in A and q in B.

Because u is the lowest common ancestor of p and q, calling FindPairs on the children of a
higher node would result of p and q not being in a pair and calling FindPairs on the children in
one of the nodes of one of the subtrees of u would result by p or q not being in any pair. Thus, the
pair {A,B} is the unique one separating p and q.

Running time analysis. Each time the recursion tree split in two, there is one more pair added to the
decomposition. So, the algorithm run-time is in the number of pairs in the final decomposition.

Now that we have an algorithm to compute a WSPD, it is time to verify the size of the computed
WSPD. Because there can be

(
n
2

)
pairs in all, it is important to have a bound asymptotically lesser.

So, we have the following theorem:

Theorem 1. The algorithm FindWSPD find a Well-separated pair decomposition (WSPD) of size
O(sdn).

Callahan and Kosaraju proved this in their original paper [3]. The proof is very technical and
long, so we will not do it here. However, the idea of the proof is that a set A cannot be in too many
pair {A,B}, and thus, the total number of pairs is bounded linearly to what the theorem 1 says.

4 t-spanners

4.1 Construction and proof

One of the applications of the WSPD is the t-spanners. A t-spanner of the point set S is a graph
such that S is the vertex set of the graph and that the euclidean length of a path between two
points p and q in S is less than or equal to t|pq| where |pq| is the euclidean distance between p and

5

q. Of course, the complete graph satisfies this definition but is not very interesting because of his
great number of edges.

Consider the following construction. Construct the graph with the point set S as vertex set and
for each pair {A,B} in a WSPD, add an edge from an arbitrary point a ∈ A to an arbitrary point
b ∈ B. Note that the resulting graph has a linear number of edges. What would be interesting with
this graph is if it could be proven that it is a t-spanner for some constant t in function of s. That
is what we are going to show. But, before that, we need two simple lemmas.

Lemma 1. Let {A,B} be a well-separated pair with respect to s. Let p, p′ ∈ A and q ∈ B. Then,
|pp′| ≤ (2/s)|pq|.
Proof. Because p and p′ are in the same set, we have that |pp′| ≤ 2ρ where ρ is the radius of the
enclosing circle of A and B. Because p and q are in two well-separated sets, we have that |pq| ≥ sρ.
We obtain that:

|pp′|
2
≤ ρ ≤ |pq|

s
⇔

|pp′|
2
≤ |pq|

s
⇔

|pp′| ≤ 2

s
|pq|

Lemma 2. Let {A,B} be a well-separated pair with respect to s. Let p, p′ ∈ A and q, q′ ∈ B. Then,
|p′q′| ≤ (1 + 4/s)|pq|.
Proof. By the triangle inequality, we have:

|p′q′| ≤ |p′p|+ |pq|+ |qq′|

From Lemma 1, we obtain:

|p′q′| ≤ (2/s)|pq|+ |pq|+ (2/s)|pq|
= (1 + 4/s)|pq|

Now, it is time to prove that adding an arbitrary edge for each pair in the WSPD produces a
t-spanner for a point set S.

Proof. Let {A,B} be a well-separated pair with respect to s in a WSPD. Let [a, b] be the edge
connecting A to B. Let any point p ∈ A and q ∈ B. Because of the definition of the WSPD, it is
only necessary to prove that there is a t-spanner path, or t-path for short, between p and q noted
Ppq. Let the length of the path Ppq be noted |Ppq|.

Suppose there is a t-path between any pair of points which distance is less than or equal to |pq|
and that s > 2. From the triangle inequality, the assumptions and the fact that |pa| ≤ (2/s)|pq| ⇒
|pa| < |pq| and |bq| ≤ (2/s)|pq| ⇒ |bq| < |pq| according to Lemma 1, we have:

|Ppq| ≤ t|pa|+ |ab|+ t|bq|

6

From Lemma 1 and 2, we obtain:

|Ppq| ≤ t(2/s)|pq|+ (1 + 4/s)|pq|+ t(2/s)|pq|
= t(4/s)|pq|+ (1 + 4/s)|pq|

=

(
4t+ 4

s

)
|pq|+ |pq|

=

(
4(t+ 1)

s
+ 1

)
|pq|

So what we want is:

t =
4(t+ 1)

s
+ 1

t− 1 =
4(t+ 1)

s
s(t− 1) = 4(t+ 1)

s(t− 1)− 4(t+ 1) = 0

st− s− 4t− 4 = 0

t(s− 4)− s− 4 = 0

t(s− 4) = s+ 4

t =
s+ 4

s− 4

So, if t = (s+ 4)/(s− 4) and s > 4, then we have a t-spanner for the point set S.

Finally, it is possible to choose s from t by isolating s from t = (s + 4)/(s − 4) which gives
s = 4(t+ 1)/(t− 1).

4.2 t-spanners with bounded diameter

The diameter of a graph is the minimum number of edges for which it is possible to have a path
from any point to any other point in the graph. This quality is often desirable in many context. In
this section, we will show that it is possible to construct a t-spanner that have a bounded diameter.

When constructing a t-spanner with a WSPD, a choice of edge for each pair is done arbitrarily.
The two endpoints of the chosen edge are called representatives of their respective point set. How-
ever, if this choice is done by an informed decision, it is possible to construct a t-spanner such that
the diameter of the graph is bounded.

The construction of the t-spanner with a bounded diameter uses the split tree. For each node
of the split tree, the edge leading to a child with a bigger subtree is called heavy edge and the other
one is called light edge. Then, the representative of each point set associated to a node is the point
associated to the leaf reachable with a chain containing only heavy edges.

Let G be a t-spanner formed from a WSPD with this construction. Let any well-separated pair
{A,B}. Let us prove this claim:

Claim 1. Suppose that from any point in A to the representative of A, there is a path containing
at most lg(n) edges in G. Suppose the same for B. So, the diameter of a path Ppq between p ∈ A
and q ∈ B is at most 2 lg(n)− 1.

7

Proof. Because the logarithmic function is an increasing function and that lg(n/2) + lg(n/2) ≥
lg(n− 1) (the right side is the case where all but one point are on one side), the worse case is when
|A| = |B| = n/2. Then, the diameter of the path Ppq noted ||Ppq|| is:

||Ppq|| ≤ lg(n/2) + lg(n/2) + 1

= lg(n)− lg(2) + lg(n)− lg(2) + 1

= 2 lg(n)− 1

Now, it is time to prove the prerequisite of this claim to prove that there exists a path between
any two points having at most 2 lg(n)− 1 edges given the construction.

Theorem 2. From any point p ∈ A to the representative of a ∈ A, there is a path containing at
most lg(n) edges in G.

Proof. Let the pair {C,D} be the one where p ∈ C and a ∈ D without loss of generality. This proof
is by induction on the size of A.

Because a is the representative of A, this means that there is a chain of heavy edges from the
node of a in the split tree to the node of A. Because a is also in D, this means that the node of D
is an ancestor of the node of a. Then, because D is subset of A or else p would also be in D, the
chain of heavy edges in which D is leads to the node of a and, thus, a is also the representative of
D.

Because C and D are disjoint, C is not in the same heavy chain of A and, thus, contains at
most |A|/2 points. By induction, the number of edges on the path from p to the representative of
C is at most lg(|A|/2) ≤ lg(n)− 1. By adding the edge from C to D, a path from p to a having at
most lg(n) edges is obtained.

4.3 t-spanners with other specific properties

When constructing a t-spanner, arbitrary points are chosen to form an edge for each pair {A,B}.
It is possible to choose these representatives so that the resulting t-spanner has specific properties.

In [2], Callahan and Kosaraju gives many constructions that give t-spanners with specific prop-
erties. One of the constructions is that it is possible to have a t-spanner such that each vertex degree
is bounded by constant that only depends on separation ratio s and the number of dimension d.
Another construction is that it is possible to have a t-spanner such that the diameter of the graph is
equal to an arbitrary constant. Such t-spanner can have high degree. It is also possible to construct
a t-spanner such that its degree is bounded and its diameter is bounded by O(log n).

5 Bibliographic Notes

The definition of the well-separated pair decomposition (WSPD) in section 1 Introduction was taken
from one text of Smid [7] and one from Narasimhan and Smid [5] but the WSPD was originally
defined by Callahan and Kosaraju in [3]. Sections 2 The split tree and 3 The WSPD computation
are from Callahan and Kosaraju in [3]. The proof of the t-spanner from a WSPD in section 4
t-spanners is from Callahan and Kosaraju in [4] but was taken in [7]. Section 4.2 t-spanners with
bounded diameter is from Arya, Mount and Smid in [1].

8

6 Exercises

1. Give an example of point positions that would lead to a computation time of n2 for the split
tree with the naive algorithm (Algorithm 1) described in this text. What does the split tree
look like?

2. Give the algorithm to compute if two point sets are well-separated by using the bounding
boxes.

3. Give an intuition of why the choice for the condition in the FindPairs algorithm.

4. Simple algebraic calculation: Isolate s in t = (s+ 4)/(s− 4).

5. Give the base cases for each induction proof in this text.

References

[1] S. Arya, D.M. Mount, and M. Smid. Randomized and deterministic algorithms for geometric
spanners of small diameter. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 703–712, Nov 1994.

[2] Sunil Arya, Gautam Dast, David M. Mount, Jeffrey S. Salowe, and Michiel H. M. Smid. Eu-
clidean spanners: short, thin, and lanky. In ACM Symposium on Theory of Computing, pages
489–498, 1995.

[3] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multi-dimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42:546–556, 1992.

[4] Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’93, pages 291–300, Philadelphia, PA, USA, 1993. Society for Industrial and
Applied Mathematics.

[5] Michiel Smid Giri Narasimhan. Geometric Spanner Networks. Cambridge University Press,
2007.

[6] Sariel Har-peled. Geometric Approximation Algorithms. Mathematical Surveys and Monographs.
American Mathematical Society, 2011.

[7] Michiel Smid. The well-separated pair decomposition and its applications. In Teofilo Gon-
zalez, editor, Handbook of Approximation Algorithms and Metaheuristics, pages 53–1 – 53–12.
Chapman & Hall/CRC, Boca Raton, 2007.

9

	Introduction
	The split tree
	The WSPD computation
	t-spanners
	Construction and proof
	t-spanners with bounded diameter
	t-spanners with other specific properties

	Bibliographic Notes
	Exercises

