
Final Assignment

COMP 5703 - Fall 2015

1 Instructions

This is due in SCS office (or my office) by 10 AM on Thursday December 17, 2015. Please write
clearly and answer questions precisely. As a thumb rule, the answer should be limited to ≤ 2
written pages, with ample spacing between lines and in margins, per question. Always start a new
question on a new page, starting with Question 1, followed by Question 2, ..., Question n. Please
cite all the references (including web-sites, names of friends, etc.) which you have used/consulted
as the source of information for each of the questions. BTW, when a question asks you to design
an algorithm - it requires you to (1) Clearly spell out the steps of your algorithm in pseudocode
(2) Prove that your algorithm is correct and (3) Analyze the running time. By default a graph
G = (V,E) is simple, undirected and connected.

2 Problems

1. Show that the Jaccard Distance which is defined as 1− {the Jaccard Similarity} between the
two sets is a metric.

2. (a) Prove that a matching is maximum if and only if there are no augmenting paths with
respect to that matching.
(b) Prove that a bipartite graph G = (V = A ∪ B,E) has a perfect matching if and only if
for any subset S ⊆ A the number of vertices adjacent to S in B (denote it by N(S)) must be
as large as |S| (i.e. |N(S)| ≥ |S|,∀S ∈ A).

3. Present a proof, in your own words, of the Isolating Lemma, (see the report on “Parallel
Algorithm for Maximum Matching”). Where is it required in the parallel algorithm?

4. When applying amplification constructions to a locality-sensitive family of functions, we can
apply an AND composition followed by ORs or vice-versa. Which order of composition is
‘better’, and why? Explain when you would apply AND followed by ORs, and when will you
like to use ORs followed by ANDs.

5. Let C be a circle, and let V be a set of n distinct vertices on its boundary. Form a maximal
plane graph on V (i.e. we connect as many pairs of vertices as possible by straight line
segments, so that no two edges cross each other in their interior). Notice that we obtain a
plane triangulation of V . Call this triangulation X. Show that X has tree width of 2, and its
tree decomposition can be computed in polynomial time. (Keywords: Triangulated simple
polygon, dual graph, dual tree, tree-width)

1

6. Look at Procedure 1 in the report on Data Streams and Frequency Moment. Argue why 2B

is a good estimate of F0.

7. Let X = {x1, x2, · · · , xn} be a set of n-elements. Each element of xi has a positive weight
wi > 0. Let Y = {Y1, Y2, · · · , Ym} be a set of subsets of X (i.e. each Yi ⊂ X). A subset
H ⊆ X is called nice if H∩Yi 6= ∅, for i = 1, · · · ,m. The decision problem of finding a nice set
of weight at most W is NP -Hard. Let W ∗ be the weight of the nice set with smallest possible
weight. Let γ = max{|Yi|, i = 1, · · · ,m}. Provide an approximation algorithm, running in
polynomial time, that computes a nice set whose weight is at most γW ∗.

8. Given a simple graph G = (V,E), we define a cut to be a partition of the vertex set V into
two non-empty sets A and B, where A∪B = V and A∩B = ∅. An edge (a, b) ∈ E is said to
cross the cut if a ∈ A and b ∈ B. The size of the cut corresponding to the partition (A,B) is
defined to be the number of edges crossing the cut. The maximum cut problem is to find a
partition of V such that the size of the cut is maximized. Consider the following algorithm:
Step 1: Find any partition of V .
Step 2: For every vertex v ∈ V , if v would have more edges crossing the cut if placed in the
opposite partition, then move v to the opposite partition.
Prove the following

(a) Prove that the above algorithm runs in polynomial time. What is the running time?

(b) Prove that the size of the cut produced by the above algorithm is at least half of the
size of the maximum cut. (In other words its an 1/2-approximation algorithm.)

9. Given a set P of points the plane. For each point p ∈ P we denote by b(p) the maximum
Euclidean distance between p and any point in P , i.e., b(p) = max{|pq| : q ∈ P}. We denote
a point p ∈ P with minimum b(p) as the center of P . Let p be the center of P . Present
a polynomial constant time algorithm that finds a point p′ in P such that b(p′) ≤ 2 · b(p).
Analyze the running time and prove the correctness of your algorithm.

10. Suppose you have a set S of n-points in the plane and you need to construct an approximate
travelling salesperson tour TSP (S) of S. All distances are measured with respect to Euclidean
distance. You follow the following strategy. Choose any point s ∈ S, and initialize a trivial
tour T = 〈ss〉. Now we will grow this tour. Find a point v ∈ S \ {s} that is closest to s, and
update the tour to include v and the current tour becomes T = 〈svs〉. In general, suppose
currently our tour consists of k + 1 vertices T = 〈su1u2...uks〉. Now find a vertex in v ∈ S
that is closest to (but distinct from) s, u1, u2, ..., uk. Let v be closest to u ∈ {s, u1, u2, ..., uk}.
Then the new tour is obtained by inserting v just after u in T . (For example, if v was closest
to u3, than the new tour will be T = 〈su1u2u3vu4...uks〉.) We repeat this process till all the
points in S are added to T . Show that the cost of T is at most twice the cost of an optimal
tour. (Note that the cost of a tour is the sum total of the costs of all the edges in the tour.)

2

