
Data Streams and Frequency moments

Asad Narayanan

November 14, 2015

1 Introduction

Data streaming is an area that is growing in the field of computer science and has many applications
in areas such as databases, network monitoring, theory of algorithms etc. Data stream is a sequence
of voluminous data arriving at high speed. In most cases the data can be accessed only once. A
good example of data stream application would be a network monitoring system which monitors
network tra�c for some type of attacks. Our aim is to compute statistics of these data with limited
amount of time and space. If we plan to keep record of all the IP addresses, then we would require
a space of the order 232. For this purpose, instead of storing entire data we have to generate a
sketch of data which can later be reused to compute statistics [3].

2 Definition

Figure 1: Data Stream

We represent data stream as a sequence of data A = (a1, a2, a3, . . . , am) of length M where each
element ai 2 (1, 2, 3, 4, . . . , N) N distinct elements. Each element ai occurs mi times i.e. mi =
|{j|aj = ai}| [1]. The sequence of data is completely arbitrary. The length of M and N could
possibly be very large which makes it impossible to store in local disk. Our aim is to process these
data in constant to logarithmic time and space.

1

3 Frequency Moments

Frequency moments of data streams is a powerful statistical tool which can be used to determine
demographic information of data [1]. The k-th frequency moment of sequence A for k � 0 is defined
as:

Fk(A) =
nX

i=1

mk
i

F0 is the zeroth frequency moment and it represent number of distinct element in a sequence
of data. One of the main application of F0 is in large databases where query optimizer can find
the number of unique elements of an attribute without performing expensive sorting algorithm on
entire column [2]. F1 gives the number of elements in the data stream. Second frequency moment
F2 is used to calculate repeat rate or ginnis index of homogeneity and moments k > 2 is used to
calculate the skew of the data which has applications in parallel databases to design access plan
and query result size [1] [2].

4 Calculating Frequency Moments

A direct approach to find the frequency moments requires to maintain a register mi for all distinct
elements ai 2 (1, 2, 3, 4, . . . , N) which requires at least memory of order ⌦(N) [1]. But we have
space limitations and requires an algorithm that computes in much lower memory. This can be
achieved by using approximations instead of exact values. An algorithm that computes an (", �)-
approximation of Fk, where Pr[|F 0

k � Fk|  "Fk] � 1 � �, F 0
k is the (", �)- approximated value of

Fk [3]. Where " is the approximation parameter and � is the confidence parameter [4].

4.1 Calculating F0

4.1.1 FM-Sketch Algorithm

Flajolet et. al in [5] introduced probabilistic method of counting which was inspired from a paper
by Robert Morris Counting large numbers of events in small registers. Morris in his paper says that
if the requirement of accuracy is dropped, a counter n can be replaced by a counter logn which can
be stored in loglogn bits [7]. Flajolet et. al in [5] improved this method by using a hash function h
which is assumed to uniformly distribute the element in the hash space (a binary string of length
L).

h : [m] ! [0, 2L � 1]

Let bit(y, k) represent the kth bit in binary representation of y

y =
X

k�0

bit(y, k) ⇤ 2k

Let ⇢(y) represens the position of least significant 1-bit in the binary representation of yi with
a suitable convention for ⇢(0).

⇢(y) =

(
Min(bit(y, k)) if y > 0

L if y = 0

2

Let A be the sequence of data stream of length M whose cardinality need to be determined.
Let BITMAP [0 . . . L� 1] be the hash space where the ⇢(hashedvalues) are recorded. The below
algorithm the determines approximate cardinality of A.

Procedure 1 FM-Sketch
for i in 0 to L� 1 do

BITMAP[i]:=0
end for

for x in A: do
Index:=⇢(hash(x))
if BITMAP [Index] = 0 then

BITMAP [Index] := 1
end if

end for

B:= Position of left most 0 bit of BITMAP []
return 2B

If there are N distinct elements in a data stream.

• For i >> log(N) then BITMAP [i] is certainly 0

• For i << log(N) then BITMAP [i] is certainly 1

• For i ⇡ 1 then BITMAP [i] is a fringes of 00s and 10s

Example (FM-Sketch)

Let the following represents the datastream.

Let the hashed values be:
h(a1) = 011001
h(a2) = 100101
h(a3) = 101100
h(a4) = 011011

Then according to algorithm BITMAP will be equal to
BITMAP = 11000000

First occurrence of 0� bit is at position 2
=) F0 = 22 = 4

To improve the accuracy, Flajolet and Martin extended the algorithm by taking an array of bit
strings instead of one and the position of 0 is averaged. This algorithm is called Probabilistic
counting with stochastic averaging (PCSA).

Next we will discuss an algorithm which is an improvement of this algorithm.

3

4.1.2 K-Mninmum Value Algorithm

We have seen the first attempt to approximate F0 in the data stream by Flajolet and Martin. Their
algorithm picks a random hash function which they assume to uniformly distribute the hash values
in hash space. Such an ideal hash function is not possible in reality.

Bar-Yossef et al. in [4], introduces k-minimum value algorithm for determining number of distinct
elements in data stream. They uses a similar hash function h which can be normalised to [0,1]
as h : [m] ! [0, 1]. But they fixed a limit t to number of values in hash space. The value of t

is assumed of the order O(
1

"2
) (i.e. less approximationvalue " requires more t). KMV algorithm

keeps only t smallest hash values in the hash space. After all the m values of stream are arrived,

� = Max(h(ai)) is used to calculate F 0
0 =

t

�
. That is, in a close-to uniform hash space, they expect

atleast t elements to be less than
t

F0
.

Procedure 2 K-Minimum Value
Initialize first t values of KMV
for a in a1 to an do

if h(a) < Max(KMV) then
Remove Max(KMV) from KMV set
Insert h(a) to KMV

end if

end for

return t/Max(KMV)

Figure 2: Values distributed in hash space

Example KMV

Let us assume there are 8 distinct element in a data stream and the number of hash values t = 4.

Then we can say that atleast 4 hashed values will be less that 0.5, as shown in Figure 2.
This means t-th smallest will be approximately equal to 0.5. So we can assume � ⇡ 0.5.

So, F0 = t/� = 4/0.5 = 8

4

Complexity analysis of KMV

KMV algorithm can be implemented in O((
1

"2
).log(m)) memory bits space. Each hash value

requires space of order O(log(m)) memory bits. There are hash values of the order O(
1

"2
). The

access time can be reduced if we store the t hash values in a binary tree. Thus the time complexity

will be reduced to O((
1

"
).log(m)).

4.2 Calculating Fk

Alon et al. in [1] estimates Fk by defining random variables that can be computed within given
space and time. The expected value of random variable gives the approximate value of Fk.

Let us assume length of sequence m is known in advance.

Construct a random variable X as follows

• Select ap be a random member of sequence A with index at p. ap = l 2 (1, 2, 3, n)

• Let r = |{q : q � p, ap = l}|, represents the number of occurrences of l within the members of
the sequence A following ap.

• Random variable X = m(rk � (r � 1)k)

They assume S1 be of the order O(n1�1/k/�2) and S2 be of the order O(log(1/")). Algorithm
takes S2 random variable Y1, Y2, . . . , YS2 and outputs the median Y . Where Yi is the average of
Xij where 1  j  S1.
Now we calculate expectation of random variable E(X).

E(X) =
nX

i=1

miX

i=1

(jk � (j � 1)k)

=
m

m
[(1k + (2k � 1k) + . . .+ (mk

1 � (m1 � 1)k))

+(1k + (2k � 1k) + . . .+ (mk
2 � (m2 � 1)k)) + . . .

+(1k + (2k � 1k) + . . .+ (mk
n � (mn � 1)k))]

=
nX

i=1

mk
i = Fk

5

Complexity of Fk

From the algorithm to calculate Fk discussed above, we can see that each random variable X stores
value of ap and r. So, to compute X we need to maintain only log(m) bits for storing ap and log(n)
bits for storing r. Total number of random variable X will be the S1 ⇤ S2.

Hence the total space complexity the algorithm takes is of the order of

O

0

B@
klog(

1

"
)

�2
n
1�

1

k (logn+ logm)

1

CA

Simpler approach to calculate F2

The previous algorithm calculates F2 in O(
p
n(logm+ logn)) memory bits. Alon et. al in [1] sim-

plified this algorithm using four-wise independent random variable with values mapped to {�1, 1}.

This further reduces the complexity to calculate F2 to

O

0

B@
log(

1

"
)

�2
(logn+ logm)

1

CA

5 Exercise

1. In the algorithm to calculate Fk we assumed the size ofm is known. Explain how the algorithm
will function if size of m is unknown.

6

References

[1] Alon, Noga, Yossi Matias, and Mario Szegedy. ’The Space Complexity Of Approximating The
Frequency Moments’.Journal of Computer and System Sciences58.1 (1999): 137-147

[2] Woodru↵, David. ’Frequency Moments’. (2005): 2-3.

[3] Indyk, Piotr, and Woodru↵ David. ’Optimal Approximations Of The Frequency Moments Of
Data Streams’.Proceedings of the thirty-seventh annual ACM symposium on Theory of com-
puting - STOC ’05(2005): 202.

[4] Ziv, Bar-Yossef et al. ’Counting Distinct Elements In A Data Stream.’.International Workshop
on Randomization and Approximation Techniques2483 (2002): 1-10.

[5] Philippe, Flajolet, and Nigel Martin G. ’Probablistic Counting Algorithms For Database Ap-
plications’.Journal of computer and system sciences31.2 (1985): 182-209.

[6] Morris, Robert. ’Counting Large Numbers Of Events In Small Registers’.Communications of
the ACM21.10 (1978): 840-842.

[7] Flajolet, Philippe. ’Approximate Counting: A Detailed Analysis’.BIT25.1 (1985): 113-134.

[8] http://research.neustar.biz/2012/07/09/sketch-of-the-day-k-minimum-values/

7

