
Parallel Algorithm for
Bipartite Graph Matching

Vladislav Brion

COMP 5703

November 23 2015

Outline

• Definitions

• Classic maximum matching algorithm

• Randomized algorithms - definitions

• The Isolating Lemma

• The parallel perfect matching algorithm

• The parallel maximum matching and related problems

Definitions

• Bipartite graph 𝐺 𝑈, 𝑉, 𝐸 : consists of two disjoint groups
U= {𝑢1, … , 𝑢𝑛}, 𝑉 = {𝑣1, … , 𝑣𝑛} connected by 𝑚 non-weighted
edges 𝑢𝑖 , 𝑣𝑗 ∈ 𝐸.

• Matching𝑀 ⊆ 𝐸: no two edges have a common vertex.

• Maximal matching𝑀1 ⊆ 𝐸: can’t be extended.
𝑀2⊂ 𝐸: 𝑀2 > 𝑀1 can exist

• Maximum matching𝑀1 ⊆ 𝐸: maximum cardinality.
• No 𝑀2 ⊂ 𝐸: 𝑀2 > 𝑀1 exists.

A graph can have multiple maximum matchings.

Definitions (cont.)
• Perfect matching𝑀 ⊆ 𝐸: 𝑀 = 𝑛.

Any perfect matching is a maximum matching. A graph can have
multiple perfect matchings. For a graph with weighted edges, a
minimum weight perfect matching is a perfect matching with minimal
sum of edge weights for all perfect matchings in 𝐺.

• A vertex v is matched if it is the endpoint of an edge in a matching 𝑀.

• Augmenting path with respect to 𝑀 is a path whose endpoints are
non-matched and edges are alternately not in 𝑀 and in 𝑀.
Augmenting paths have odd lengths. Odd edges including beginning
and ending edges ∉ 𝑀; even edges ∈ 𝑀.

Classic maximum matching algorithm

Maximum matching algorithm for a bipartite graph 𝐺(𝑈, 𝑉, 𝐸):

• 1. Start at 𝑀 = Ø.
• 2. While an augmenting path exists:

• Find an augmenting path 𝑃 with respect to 𝑀
• 𝑀 = 𝑀 𝑃

Augmenting path:

ED – DC – CF

Classic maximum matching algorithm (cont.)

At each iteration, 𝑀 is increased by 1. If an augmenting path doesn’t
exist, a matching 𝑀 is a maximum matching (Berge’s theorem).

The complexity of the algorithm: 𝑂(𝑉 𝐸).

The complexity of more efficient algorithm (Hopcroft-Carp algorithm):

𝑂 𝑉 𝐸 = 𝑂 𝑚 𝑛 .

For further reducing complexity of maximum matching:

randomized parallel algorithms.

Randomized algorithms - definitions

Two approaches for algorithms:

• Deterministic algorithms: exact solutions.

The same input: the same output for the same time.

Efficiency: average-case/worst case time analysis.

• Randomized algorithms: possibly incorrect answer with a low
probability.

The same input: different time.

Simpler or faster.

Many parallel algorithms are randomized.

Randomized algorithms – definitions (cont.)

Two classes of randomized algorithms:

• Las Vegas algorithm: always the correct solution.

Various running time.

Example: a randomized quick sort algorithm.

• Monte Carlo algorithm: can fail with low probability.

Reapplying decreases the failure probability.

Much faster.

𝑹𝑵𝑪𝒄 algorithm: constants 𝑐 and 𝑘 exist such that it can be executed
in 𝑂(𝑙𝑜𝑔𝑐(𝑛) time using 𝑂(𝑛𝑘) parallel processors.

The Isolating Lemma

A set system (𝑺, 𝑭) consists of a finite set 𝑆 = 𝑥1, 𝑥2, … , 𝑥𝑛 and a
family of subsets 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑘 , 𝑆𝑗 ⊆ 𝑆, for 1 ≤ 𝑗 ≤ 𝑘.

A weight 𝑤𝑖 is assigned to each 𝑥𝑖 ∈ 𝑆, and the weight of a set 𝑆𝑗 ⊆ 𝑆
is defined as 𝑥𝑖∈𝑆𝑗𝑤𝑖. A set with minimal weight may not be unique.

Lemma: Let 𝑆, 𝐹 be a set of dimension 𝑛 whose elements are
assigned by random integer weights chosen uniformly and
independently from [1, 𝑁]. Then:

Pr 𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑡 𝑖𝑛 𝐹 ≥
𝑛

𝑁

Note: the size of 𝐹 is arbitrary: 𝑘 ∈ [1 ∶ 2𝑛 − 1]. The weights of all
sets ∈ 1,… , 2𝑛2 . The weights of the sets are not independent.

The Isolating Lemma (cont.)

Proof: Assume that each element of 𝑆 occurs in at least one set in 𝐹.
Select random weights of all elements except 𝑥𝑖. Suppose that we have
two minimal sets: set 𝑆𝑚 contains 𝑥𝑖, and set 𝑆𝑙 doesn’t. Let 𝑊𝑖 be the
weight of 𝑆𝑚, excluding the weight of 𝑥𝑖, and 𝑊𝑖 be the weight of 𝑆𝑙.
Define 𝛼𝑖 = 𝑊𝑖 − 𝑊𝑖, the value of which can be positive or negative.
Note that 𝛼𝑖, which is the threshold for 𝑥𝑖, does not depend on 𝑤(𝑥𝑖).

If 𝑤 𝑥𝑖 < 𝛼𝑖 then weight 𝑊𝑖 + 𝑤(𝑥𝑖) = weight of minimal set 𝑆𝑚
containing 𝑥𝑖 < 𝑊𝑖. Therefore, every minimum set must contain 𝑥𝑖.

Similarly, if 𝑤 𝑥𝑖 > 𝛼𝑖 then weight 𝑊𝑖 + 𝑤(𝑥𝑖) = weight of minimal
set 𝑆𝑚 containing 𝑥𝑖 > 𝑊𝑖. Therefore, 𝑥𝑖 is in no minimum weight
subset.

The Isolating Lemma (cont.)

If 𝑤 𝑥𝑖 = 𝛼𝑖, no conclusion can be made about whether an arbitrary
minimal weight set contains 𝑥𝑖 or not. In this case we say that this
element is singular. The presence of a singular element means that for
two distinct minimum weight sets 𝑆𝑚 and 𝑆𝑙 only one of them contains
𝑥𝑖, i.e. a minimum weight set is not unique. The presence of a singular
element is equivalent to non-uniqueness of the minimum weight set.

Since 𝑤(𝑥𝑖) is a randomly distributed integer in [1, 𝑁], the probability
that 𝑥𝑖 is singular is:

Pr 𝑤𝑖 = 𝛼𝑖 ≤
1

𝑁

The Isolating Lemma (cont.)

The probability that there exists a singular element among 𝑛 elements:

At most 𝑛 ×
1

𝑁
=

𝑛

𝑁

The probability that there is unique minimum set when integer
weights of all sets are selected randomly and uniformly from [1, 2𝑛] is
at least half.

By the same reasoning we can consider that the maximum weight set
will also be unique with probability at least half.

The parallel perfect matching algorithm
A bipartite graph 𝐺(𝑈, 𝑉, 𝐸) has a perfect matching. For 𝑒 𝑢𝑖 , 𝑣𝑗 :

𝑤𝑖𝑗 is an integer weight chosen uniformly and independently from [1, 2𝑚] .

By isolating lemma, the minimum weight perfect matching will be unique
with probability at least 1 2. Let 𝐵 be a 𝑛 × 𝑛 adjacency matrix:

𝑑𝑖𝑗 =
2𝑤𝑖𝑗 , 𝑢𝑖 , 𝑣𝑗 ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Lemma 1: Let M be the unique minimum weight perfect matching for
𝐺(𝑈, 𝑉, 𝐸) with weight 𝑤. Then:

1. 𝐵 ≠ 0

2. 2𝑤 is the highest power of 2 which divides 𝐵 .

The parallel perfect matching algorithm(cont.)

• Proof: For each permutation 𝜎 on {1, … , 𝑛}, define:

𝑣𝑎𝑙𝑢𝑒 𝜎 = 𝑖=1
𝑛 𝑏𝑖𝜎(𝑖)

For M, value(𝜎) = 2 𝑖=1
𝑛 𝑤𝑖𝑗 = 2𝑤. If another permutation doesn’t

correspond to a perfect matching, its value is 0. For other perfect
matching with higher weight, the corresponding permutation will have
higher weight 2𝜆, 𝜆 > 𝑤. Using definition of determinant:

𝐵 = 𝜎 𝑠𝑖𝑔𝑛 𝜎 × 𝑣𝑎𝑙𝑢𝑒 𝜎 = ±2𝑤 + 0… ± 2𝜆 ±⋯

The parallel perfect matching algorithm(cont.)

Lemma 2: Let 𝑀 be the unique minimum weight perfect matching in
𝐺 with weight 𝑤.

The edge 𝑢𝑖 , 𝑣𝑗 ∈ 𝑀 iff
𝐵𝑖𝑗 2

𝑤𝑖𝑗

2𝑤
is odd.

Proof: For 𝑛 × 𝑛 matrix 𝐵, minor 𝐵𝑖𝑗 is the (𝑛 − 1) × (𝑛 − 1)matrix
obtained by deleting the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column.

𝐵𝑖𝑗 2
𝑤𝑖𝑗 = 𝜎: 𝜎(𝑖)=𝑗 𝑠𝑖𝑔𝑛 𝜎 𝑣𝑎𝑙𝑢𝑒(𝜎)

If 𝑢𝑖 , 𝑣𝑗 ∈ 𝑀:
𝐵𝑖𝑗 2

𝑤𝑖𝑗

2𝑤
=
±2𝑤 +0…±2𝜆 ±⋯

2𝑤
= 1 + 2𝜆−𝑤: odd

The parallel perfect matching algorithm(cont.)
Input: Bipartite graph 𝐺(𝑈, 𝑉, 𝐸) with at least one perfect matching

Output: A perfect matching 𝑀 ⊆ 𝐸

• For each edge 𝑢𝑖 , 𝑣𝑗 ∈ 𝐸 do in parallel:

select random integer weights 𝑤𝑖𝑗 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[1, 2𝑚].

• Compute the matrix 𝐵 , as well as 𝐵 and obtain 𝑤.

• Compute adjoint matrix 𝑎𝑑𝑗(𝑏) whose (𝑗, 𝑖)𝑡ℎ entry is minor |𝐵𝑖𝑗|.

• For each edge 𝑢𝑖 , 𝑣𝑗 ∈ 𝐸 do in parallel:

compute
𝐵𝑖𝑗 2

𝑤𝑖𝑗

2𝑤
;

if this value is odd, then add (𝑖, 𝑗) into 𝑀.

• If the selected edges don’t form a perfect matching: repeat step 1.

The parallel perfect matching algorithm(cont.)

Complexity of the algorithm: the most expensive computation steps
are evaluation of determinant and adjoint of the matrix 𝐵. They can be
computed by Pan’s randomized parallel algorithm [5] that requires
𝑂(𝑙𝑜𝑔2𝑛) time and 𝑂 𝑛3.5𝑚 processors for inverting 𝑛 × 𝑛 matrix
with 𝑂(𝑚)-bit integers.

This is a Monte Carlo algorithm that with probability at least 1 2
produces a correct answer (by isolating lemma). In the case of incorrect
result the algorithm should be rerun. The probability of incorrect
output decreases exponentially.

The algorithm of the perfect matching is used to compute maximum
matching in a bipartite graph 𝐺(𝑈, 𝑉, 𝐸) when the size of the maximum
matching is unknown.

Algorithm for maximum matching

1. Extend 𝐺 to complete bipartite graph (𝑚 = 𝑛2).

2. Select random integer weights 𝑤𝑖𝑗 = 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[1, 2𝑚].

3. Add 2𝑚𝑛 to the weight of each new edge.

4. Repeat the steps 2-5 from the algorithm of perfect matching.

5. Remove edges added at the first step.

maximal weight of maximum matching ≤ 2𝑚𝑛

weight of artificial edge > 2𝑚𝑛

Complexity: 𝑅𝑁𝐶𝟐 using 𝑂 𝑛3.5𝑚 parallel processors

Parallel algorithms for related problems

• Finding perfect matching for general graphs. In this case the matrix
𝐵 is obtained from the Tutte matrix.

• Finding a minimum weight perfect matching in a graph 𝐺(𝑉, 𝐸) with
integer edge weights 𝑤 𝑒 . Each weight should be assigned by
𝑚𝑛𝑤 𝑒 + 𝑟𝑒 where 𝑟𝑒 is integer selected independently and
uniformly from [1, 2𝑚]. Adding random weight will isolate one of the
minimum weight matchings. This problem is also 𝑅𝑁𝑆2 with
𝑂 𝑛3.5𝑚𝑊 processors where 𝑊 is the weight of the heaviest edge.

• For a graph with positive weight for each vertex, finding a matching
with maximal vertex-weight.

• Combinatorial search problem.

References

• [1] A.V. Aho, J.E. Hopcroft and J.D. Ulman. Data Structures and
Algorithms. Addison-Wesley, Reading, MA, 1983.

• [2] J. Jaja. An Introduction to Parallel Algorithms. Addison-Wesley,
Reading, MA, 1992

• [3] J.E. Hopcroft and R.M. Karp. An 𝑛 5 2 algorithm for maximum
matching in bipartite graph. SIAM Journal on Computing, 2:225-231,
1973.

• [4] W. Kocay and D.L. Kreher. Graphs, Algorithms and Optimization.
Discrete Mathematics and its Application Series, Chartman & Hall,
2004.

• [5] K. Mulmuley, U.V. Vazirani and V.V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105-113, 1987.

• [6] R. Motwani and P. Raghavan. Randomized Algortihms. Cambridge
University Press, 1995.

Thank you !

Questions?

