# Treewidth and Tree-Decompositions

Presenter: Kimberly Crosbie

November 28, 2015

Kimberly Crosbie Tre

Treewidth and Tree-Decompositions

#### Overview

Definitions Algorithms Using Bounded Treewidth Determining treewidth

# What Is Treewidth?

## Intuitive Idea:

- Treewidth generalizes the property of having small seperators
- A graph with small treewidth can be recursively decomposed into small subgraphs that have small overlap
- Treewidth is a measure of how "tree-like" a graph is
- A tree should have small treewidth and a "fat-tree" should also have small treewidth

### Why is treewidth interesting?

 Many graph problems that are NP-hard in general can be solved in polynomial time on graphs with small treewidth

Kimberly Crosbie Treewidth and Tree-Decompositions

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ■ □ ◆ ○ ヘ ⊙

#### Overview

Definitions Algorithms Using Bounded Treewidth Determining treewidth

# What Is Treewidth?

## Intuitive Idea:

- Treewidth generalizes the property of having small seperators
- A graph with small treewidth can be recursively decomposed into small subgraphs that have small overlap
- Treewidth is a measure of how "tree-like" a graph is
- A tree should have small treewidth and a "fat-tree" should also have small treewidth

## Why is treewidth interesting?

 Many graph problems that are NP-hard in general can be solved in polynomial time on graphs with small treewidth



# **Tree-Decomposition**

**Definition**: A *tree decomposition* of a graph G = (V, E) is a tree T = (I, F), where each node  $i \in I$  has a label  $X_i \subseteq V$  such that:

- $\bigcup_{i \in I} X_i = V$ , or equivalently, every vertex  $v \in V$  is contained in at least one label
- for any edge  $(u, v) \in G$ , there exists an  $i \in I$  with  $u, v \in X_i$
- for any v ∈ V, the vertices containing v in their label form a connected subtree of T, or equivalently, i, j, k ∈ I, if j is on the path from i to k in T, then X<sub>i</sub> ∩ X<sub>k</sub> ⊆ X<sub>j</sub>

# An Example



Width and Treewidth

The *width* of a tree-decomposition  $({X_i | i \in I}, T = (I, F))$  is  $max_{i \in I} |X_i| - 1$ .

The *treewidth* of a graph *G* is the minimum width over all possible tree decompositions of *G*.

Kimberly Crosbie Treewidth and Tree-Decompositions

# **Further Examples**



Maximum Independent Set Monadic Second Order Logic

Maximum Independent Set

Given a graph G = (V, E), we are looking for the maximum size of a set  $W \subseteq G$  such that for all  $u, v \in W$ , the edge  $uv \notin E$ .

In the general case, this problem is NP-complete, but if we're given a tree-decomposition with bounded treewidth we can do better!

Kimberly Crosbie Treewidth and Tree-Decompositions

Maximum Independent Set Monadic Second Order Logic

# Set-up

Given a tree-decomposition of the graph G with treewidth k, it is easy to form another tree-decomposition, with treewidth k, that is a rooted binary tree.

Suppose we have such a tree-decomposition  $\{X_i \mid i \in I\}, T = (I, F)$  where *r* is the root of *T*.

For each  $i \in I$ , we define:  $Y_i = \{v \in X_j \mid j = i \text{ or } j \text{ is a descendent of } i\}$ . Let  $G[Y_i]$  be the subgraph of G induced by the vertices of  $Y_i$ .



◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Maximum Independent Set Monadic Second Order Logic

# How do we approach it?

### Key Observation:

When we have an independent set W of  $G[Y_i]$  and want to extend that to an independent set of the full graph G we only need to know what vertices of  $X_i$  that belong to W. We need not consider what vertices of  $Y_i - X_i$  are in W, we only need to know their number.

Kimberly Crosbie Treewidth and Tree-Decompositions

Maximum Independent Set Monadic Second Order Logic

# **Our Friend Dynamic Programming**

For  $i \in I$ ,  $Z \subseteq X_i$ , define  $S_i(Z)$  to be the maximum size of an independent set W in  $G[Y_i]$  with  $W \cap X_i = Z$ . If no such set exists, we set  $S_i(Z) = -\infty$ .

We compute all tables of  $S_i$  for all nodes  $i \in I$  in a bottom-up fashion.

Maximum Independent Set Monadic Second Order Logic

# The Algorithm

Leaf node *i*: Compute all  $2^{|X_i|}$  values in the table  $S_i$  by using the following formula:

$$S_i(Z) = \begin{cases} |Z| & \text{if } \forall u, v \in Z : uv \notin E \\ -\infty & \text{if } \exists u, v \in Z : uv \in E \end{cases}$$

Kimberly Crosbie

Treewidth and Tree-Decompositions

Maximum Independent Set Monadic Second Order Logic

## The Algorithm

For an internal node *i* with children *j* and *k*, we compute  $S_i$  using the following formula:

If  $\forall u, v \in Z : uv \notin E$ :  $S_i(Z) = max\{S_j(Z') + S_k(Z'') + |Z \cap (X_i - X_j - X_k)| - |Z \cap X_j \cap X_k|\}$ , when  $Z \cap X_j = Z' \cap X_i$  and  $Z \cap X_k = Z'' \cap X_i$ 

If  $\exists u, v \in Z : uv \in E$ :  $S_i(Z) = -\infty$ 

Kimberly Crosbie

Treewidth and Tree-Decompositions

Maximum Independent Set Monadic Second Order Logic

# The Algorithm

- For each node  $i \in I$  we compute the table  $S_i$  in bottom-up order until we have computed the table  $S_r$ .
- Find the size of the maximum independent set of the graph *G* by taking  $max_{Z \subseteq X_r}S_r(Z)$ .

• Therefore, we can solve the problem in  $O(2^{3k}n)$  time.

Kimberly Crosbie Treewidth and Tree-Decompositions

▲□▶▲□▶▲□▶▲□▶ 三三 のへで

Maximum Independent Set Monadic Second Order Logic

# The Algorithm

- For each node  $i \in I$  we compute the table  $S_i$  in bottom-up order until we have computed the table  $S_r$ .
- Find the size of the maximum independent set of the graph *G* by taking  $max_{Z \subseteq X_r}S_r(Z)$ .
- Therefore, we can solve the problem in  $O(2^{3k}n)$  time.

Kimberly Crosbie Treewidth and Tree-Decompositions

▲□▶▲□▶▲□▶▲□▶ 三三 のへで

Maximum Independent Set Monadic Second Order Logic

Hard problems made easy!

**Claim:** Any problem that can be stated in monadic second order logic can be solved in linear time on graphs with bounded treewidth.

Kimberly Crosbie Treewidth and Tree-Decompositions

▲□▶▲@▶▲≧▶▲≧▶ ≧|≒ のQ@

Maximum Independent Set Monadic Second Order Logic

# Monadic Second Order Logic

Monadic second order logic is a language to describe graph properties that uses the following constructions:

- Logic operations ( $\land,\lor,\neg,\Rightarrow$ )
- membership tests (e.g,  $e \in E$ ,  $v \in V$ )
- quantifications over vertices, edges, sets of vertices, sets of edges (e.g., ∀v ∈ V, ∃e ∈ E, ∃I ⊆ V, ∀F ⊆ E)
- adjacency tests (*u* is an endpoint of *e*)
- and some extensions that allow for things such as optimization.

Maximum Independent Set Monadic Second Order Logic

More Monadic Second Order Logic

The 3-colouring problem for graphs can be expressed in monadic second order logic as follows:  $\exists W_1 \subseteq V : \exists W_2 \subseteq V : \exists W_3 \subseteq V : \forall v \in V : (v \in W_1 \lor v \in W_2 \lor v \in W_3) \land \forall v \in V : \forall w \in W : (v, w) \in E \Rightarrow (\neg (v \in W_1) \lor v \in V)$ 

 $W_1 \land w \in W_1) \land \neg (v \in W_2 \land w \in W_2) \land \neg (v \in W_3 \land w \in W_3))$ 

Kimberly Crosbie T

Treewidth and Tree-Decompositions



- Given a graph G = (V, E) and an integer k, the problem to determine if the treewidth of G is at most k had be proven to be NP-complete.
- On special graphs (e.g. tree, circle graphs) it can be solved in constant or polynomial time.
- Open problem: what about planar graphs?



|              | Appendix | Bibliography |
|--------------|----------|--------------|
| Bibliography |          |              |
|              |          |              |

Bodlaender, H.L. A Tourist Guide through Treewidth *Acta Cybernetica*, 11(1-2):1, 1994.

Kimberly Crosbie Treewidth and Tree-Decompositions