
Locality-Sensitive Hashing
& Image Similarity Search

Andrew Wylie

Overview; LSH

● given a query q (or not), how do we find similar items from a
large search set quickly?
○ Can’t do all pairwise comparisons; nC2 pairs

● define a measure of similarity for the items, then hash them
into buckets using the measure.
○ Items which are similar will be in the same bucket.

● then when given a query q, we hash it and return items in the
same bucket.

Overview; LSH

● it’s a way to do approximate near-neighbour search
○ Item signatures used are approximate (mostly)
○ Items hashing to the same bucket is probabilistic

● so multiple hash tables are composed for better accuracy

Overview; LSH

● there are many similarity/distance measures
○ Jaccard
○ Euclidean
○ Hamming
○ Cosine

● allows sublinear query time of O(dn1/ 1+ ϵ)
● preprocessing varies based on data & representation

○ Edit
○ Chi2

○ p-stable
○ Kernelized

Euclidean Distance

● n-dimensional space
● most often l2 norm, l1 & l∞ norms also used
● d(v, u) = (∑i |vi - ui|

p)1/p

● eg. x = [7, 2, 3], y = [5, 0, -2]
○ d2(x, y) = [(7 - 5)2 + (2 - 0)2 + (3 - (-2))2]½

○ d2(x, y) = 291/2 = 5.39

Euclidean Distance & Random Projections

● we won’t compute the distance between the points!
● use a randomly chosen line in 2-space (for each hash fn)

● select a constant a to divide line
into equal width segments

● points projected onto the line,
buckets are the segments

● (a/2, 2a, 1/2, 1/3)-sensitive family

Cosine Distance

● it’s the angle between two vectors/points (in degrees)
● calculated as their dot product divided by l2 norms

● eg. x = [7, 2, 3], y = [5, 0, -2]
○ d(x,y) = (7*5) + (2*0) + (3*(-2)) / ||x||2 ||y||2
○ d(x,y) = 29 / 621/2 * 291/2

○ d(x,y) = cos-1(0.684)
○ d(x, y) = 46.8 degrees

Cosine Distance & Random Hyperplanes

● don’t actually compute this distance for x & y
● consider a random plane through the origin w/ normal v
● compute instead v.x & v.y

Cosine Distance & Random Hyperplanes

● we’ll say they’re similar if they have the same sign
● (d1, d2, (180 − d1)/180, (180 − d2)/180)-sensitive

p-Stable Distribution Scheme

● locality-sensitive families for lp norm using p-stable distribution
○ eg. Gaussian distribution is 2-stable

● distribution is stable if
○ ∑i viXi has same distribution as (∑i |vi|

p)1/p X

● so with v & X as vectors the dot product estimates the lp norm

p-Stable Distribution Scheme

● dot product is instead used to assign a hash value to v
○ projects to a value on the real line
○ split line into equal-width segments of size r for buckets

● two vectors which are close have a small difference between
norms, and should collide

● ha,b(v) = ⌊(a.v + b) / r⌋
● family is (r1, r2, p1, p2)-sensitive

Image Similarity Search

● consider the case of search in web engines
○ most engines return image search matches based on

■ surrounding text on the page
■ image metadata

● could lead to incorrect results for mislabelled images &c

● can we do better than this?
○ should also match on similar images

Google Image Search (VisualRank)

● uses PageRank for initial candidate results
● feature vectors extracted using SIFT (local features)

Google Image Search (VisualRank)

● clusters images based on similarity
○ measured using p-stable
○ Gaussian distribution
○ l2 norm

Google Image Search (VisualRank)

● top results selected as graph center
○ eigenvector centrality measure

Image Similarity Search

● other methods have been proposed...

● chi2 distance scheme
○ also based on p-stable
○ modified to use X2 distance measure
○ similarity more accurate wrt/ global image descriptors

■ eg. color histograms (what’s mostly used)

Image Similarity Search

Image Similarity Search

● kernelized lsh (afaik)
○ constructed using kernel function (& some database items)

■ eg. gaussian blur, radial basis functions
■ method allows functions with unknown embeddings

○ given kernelized data & kernel function
■ need to use random hyperplane in kernel-induced feature space
■ construct hyperplane as weighted sum of random items
■ transform to change to normal distribution
■ which is used with the (modified) random hyperplane method

Image Similarity Search

● kernelized lsh (example)
○ 80 million images; extracting 384-dimensional vector
○ image → gist descriptor → Gaussian RBF Kernel
○ only .098% of all images searched

References
● Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based on p-

stable distributions. ACM Press, 2004.

● Yushi Jing and Shumeet Baluja. VisualRank: Applying PageRank to Large-Scale
Image Search. 2008.

● Gorisse, D. and Cord, M. and Precioso, F. Locality-Sensitive Hashing for Chi2
Distance. 2012

● Kulis, B. and Grauman, K. Kernelized Locality-Sensitive Hashing. 2012

● Ullman, J. and Rajaraman, A. and Leskovec, J. Mining of Massive Datasets.
2010

