Locality-Sensitive Hashing

& Image Similarity Search

Andrew Wylie

Overview; LSH

- given a query *q* (or not), how do we find similar items from a large search set quickly?
 - \circ Can't do all pairwise comparisons; nC2 pairs
- define a measure of similarity for the items, then hash them into buckets using the measure.
 - Items which are similar will be in the same bucket.
- then when given a query q, we hash it and return items in the same bucket.

Overview; LSH

- it's a way to do **approximate** near-neighbour search
 - Item signatures used are approximate (mostly)
 - Items hashing to the same bucket is probabilistic
- so multiple hash tables are composed for better accuracy

Overview; LSH

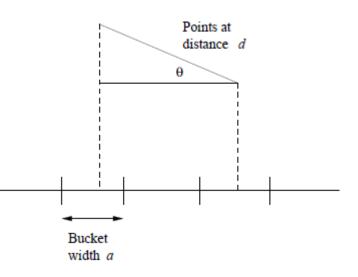
- there are many similarity/distance measures
 - Jaccard Edit
 - Euclidean
 Chi²
 - Hamming
- *p*-stable
 - Cosine Kernelized
- allows sublinear query time of $O(dn^{1/1+\epsilon})$
- preprocessing varies based on data & representation

Euclidean Distance

- *n*-dimensional space
- most often I_2 norm, $I_1 \& I_{\infty}$ norms also used
- $d(v, u) = (\sum_{i} |v_{i} u_{i}|^{p})^{1/p}$
- eg. x = [7, 2, 3], y = [5, 0, -2] \circ d₂(x, y) = [(7 - 5)² + (2 - 0)² + (3 - (-2))²]^{1/2} \circ d₂(x, y) = 29^{1/2} = 5.39

Euclidean Distance & Random Projections

- we won't compute the distance between the points!
- use a randomly chosen line in 2-space (for each hash fn)
- select a constant *a* to divide line into equal width segments
- points projected onto the line, buckets are the segments
- (a/2, 2a, 1/2, 1/3)-sensitive family



Cosine Distance

- it's the angle between two vectors/points (in degrees)
- calculated as their dot product divided by I_2 norms

• eg. x = [7, 2, 3], y = [5, 0, -2]

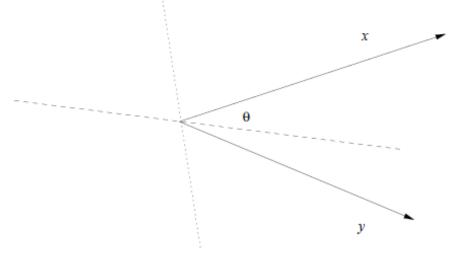
$$\circ$$
 d(x,y) = (7*5) + (2*0) + (3*(-2)) / $||x||_2 ||y||_2$
 \circ d(x,y) = 29 / 62^{1/2} * 29^{1/2}
 \circ d(x,y) = cos⁻¹(0.684)
 \circ d(x, y) = 46.8 degrees

Cosine Distance & Random Hyperplanes

- don't actually compute this distance for *x* & *y*
- consider a random plane through the origin w/ normal v
- compute instead *v.x* & *v.y*

Cosine Distance & Random Hyperplanes

- we'll say they're similar if they have the same sign
- $(d_1, d_2, (180 d_1)/180, (180 d_2)/180)$ -sensitive



p-Stable Distribution Scheme

- locality-sensitive families for *I_p* norm using *p*-stable distribution
 eg. Gaussian distribution is 2-stable
- distribution is stable if
 - $\sum_{i} v_{i}X_{i}$ has same distribution as $(\sum_{i} |v_{i}|^{p})^{1/p} X$
- so with v & X as vectors the dot product estimates the I_p norm

p-Stable Distribution Scheme

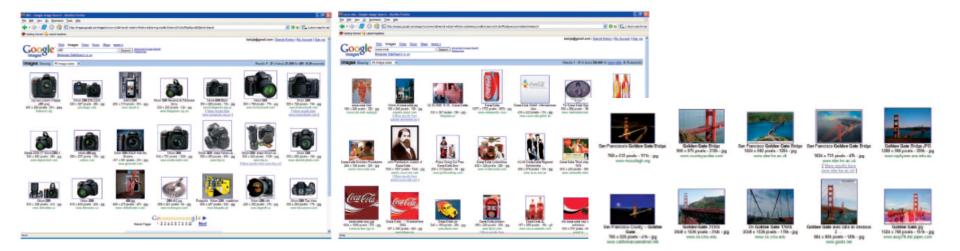
- dot product is instead used to assign a hash value to v
 - projects to a value on the real line
 - split line into equal-width segments of size *r* for buckets
- two vectors which are close have a small difference between norms, and should collide

- $h_{a,b}(v) = L(a.v + b) / r \rfloor$
- family is (r₁, r₂, p₁, p₂)-sensitive

- consider the case of search in web engines
 - most engines return image search matches based on
 - surrounding text on the page
 - image metadata
- could lead to incorrect results for mislabelled images &c
- can we do better than this?
 - should also match on similar images

Google Image Search (VisualRank)

- uses PageRank for initial candidate results
- feature vectors extracted using SIFT (local features)



Google Image Search (VisualRank)

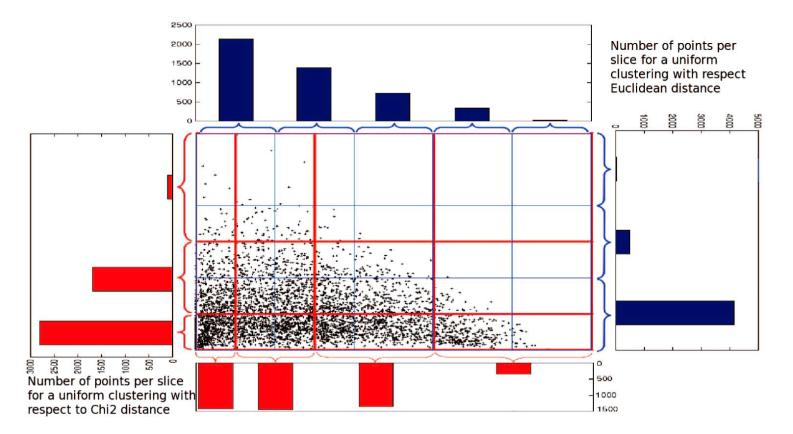
- clusters images based on similarity
 - measured using *p*-stable
 - Gaussian distribution
 - I₂ norm

(c)

Google Image Search (VisualRank)

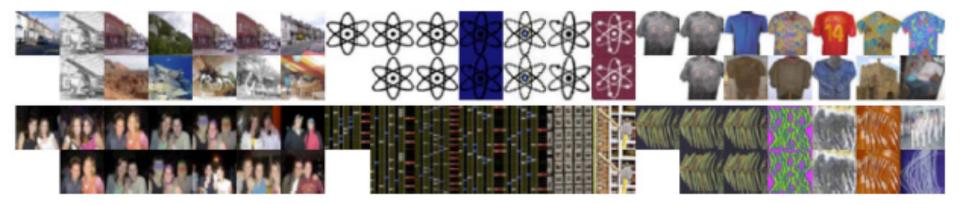
- top results selected as graph center
 - eigenvector centrality measure

- other methods have been proposed...
- chi² distance scheme
 - also based on *p*-stable
 - modified to use X^2 distance measure
 - similarity more accurate wrt/ global image descriptors
 - eg. color histograms (what's mostly used)



- kernelized lsh (afaik)
 - constructed using kernel function (& some database items)
 - eg. gaussian blur, radial basis functions
 - method allows functions with unknown embeddings
 - o given kernelized data & kernel function
 - need to use random hyperplane in kernel-induced feature space
 - construct hyperplane as weighted sum of random items
 - transform to change to normal distribution
 - which is used with the (modified) random hyperplane method

- kernelized lsh (example)
 - 80 million images; extracting 384-dimensional vector
 - \circ image \rightarrow gist descriptor \rightarrow Gaussian RBF Kernel
 - only .098% of all images searched



References

- Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based on pstable distributions. ACM Press, 2004.
- Yushi Jing and Shumeet Baluja. VisualRank: Applying PageRank to Large-Scale Image Search. 2008.
- Gorisse, D. and Cord, M. and Precioso, F. Locality-Sensitive Hashing for Chi2 Distance. 2012
- Kulis, B. and Grauman, K. Kernelized Locality-Sensitive Hashing. 2012
- Ullman, J. and Rajaraman, A. and Leskovec, J. Mining of Massive Datasets.
 2010