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1 Stable Marriages

The stable marriage problem is the following: given n men and n women, each man with a list
ranking the women in order of preference and each woman with a preference list of the men, find
a stable matching of the men and women, i.e. n man-woman pairs that is stable.

Definition 1.1. An instance of the stable marriage problem is a set of M of men and a set
W of women, each of size n ∈ N and for each m ∈ M , an ordered list L(m) that is a permutation
of the women in W and for each w ∈ W , an ordered list L(w) that is a permutation of the men in
M .

We will use m,m′,m′′,m1,m2,m3, . . . ,mn to denote men, and similarly for women with w.
The lists L(m) and L(w) are m’s and w’s preference lists (or simply lists), respectively.
We say m prefers w to w′, or w is a better partner for m than w′ or w′ is a worse partner

for m than w, if w appears before w′ in L(m). We do the same for w, m and m′.
The following is an instance:

m1 [w1 w3 w2] w1 [m2 m3 m1]
m2 [w3 w1 w2] w2 [m3 m1 m2]
m3 [w3 w1 w2] w3 [m1 m2 m3]

In practice, the instance would be represented as two n× n matrices, one with the men’s lists
filling out the rows and the other with the women’s lists filling out the rows.

Definition 1.2. A matching for an instance of the stable marriage problem is a set M ⊆
M ×W such that each m ∈ M and each w ∈ W appear in exactly one ordered pair in the set M.

Hence each man is paired with exactly one woman and each woman, with exactly one man. In
fact, M : M → W defines a bijection, with M(m) as the partner of m ∈ M in the matching and
M−1(w) being that of w ∈ W .

Definition 1.3. A pair (m,w) ∈ M ×W is a blocking pair for the matching M if m and w
both prefer each other to their own partners in M.

Definition 1.4. A matching M is stable or a solution, if there is no blocking pair in M ×W
for M.
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The motivation for such a definition is that given a blocking pair (m,w), m and w would leave
their partners for each other.

Definition 1.5. (m,w) ∈ M × W is a possible pairing if (m,w) ∈ M for some stable
matching M. Furthermore, m is called a possible partner for w, and similarly w for m.

Definition 1.6 A stable matching M is man-optimal (man-pessimal) if each m ∈ M is
paired with the w ∈ W he prefers most (least, respectively) of all possible partners. We let
best(m) = w (worst(m) = w, resp.), to define a function best : M → W (worst : M → W , resp.).

Define woman-optimal, woman-pessimal, best : W → M and worst : W → M similarly.

We will prove that the following algorithm, originally from ”College Admissions and Stability of
Marriage” by Gale and Shapley, always computes a stable matching (so that one always exists), and
in O(n2) time. We shall also see that the stable matching returned is man-optimal and woman-
pessimal, so that it does not depend on the order in which men are chosen to propose. The
following more general version of the algorithm is adapted from ”Algorithm Design” by Kleinberg
and Tardos, and its analysis is from Gale and Shapley’s original paper and some proofs adapted
from ”An Efficient Algorithm for the ”Stable Roommates” Problem” by Irving:

Stable marriage algorithm
While there remains a man m ∈ M who has no proposal to another held, do

w := the next women on m’s list to whom m has not proposed
m proposes to w
if w holds no proposal, then

w holds m’s proposal
else m′ := the man from whom w holds a proposal

if w prefers m′ to m, then w rejects m
else

w rejects m′

w holds m’s proposal
return the set M := {(m,w) ∈ M ×W | w holds a proposal from m}

Let’s consider running the algorithm on the following instance:

m1 [w1 w3 w2] w1 [m2 m3 m1]
m2 [w3 w1 w2] w2 [m3 m1 m2]
m3 [w3 w1 w2] w3 [m1 m2 m3]

m1 proposes to w1, who accepts: (m1, w1)
m2 proposes to w3, who accepts: (m1, w1), (m2, w3)
m3 proposes to w3, who rejects m3: (m1, w1), (m2, w3)
m3 proposes to w1, who accepts m3 and rejects m1: (m3, w1), (m2, w3)
m1 proposes to w3, who rejects m1: (m3, w1), (m2, w3)
m1 proposes to w2, who accepts: (m3, w1), (m2, w3), (m1, w2)
Then M := {(m3, w1), (m2, w3), (m1, w2)} is a stable matching.
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Lemma 1.7. The stable marriage algorithm runs in O(n2)-time.
Proof. We assume that preference checking by women and finding the next person on a prefer-

ence list by men are O(1), and so given the women’s preference lists, we can scan them and form
a ranking matrix for the women, where the entry ij corresponds to wi’s ranking of mj , i.e. mj ’s
position on L(wi). Similarly, given a ranking matrix for men, we can construct the men’s preference
lists by copying the ranking matrix, pairing each entry with the corresponding woman ranked, and
then sorting the women on each row with respect to rank. This preprocessing takes O(n2) time.

Observe that each man proposes at most once to each woman, so at most n2 proposals are
made, and each iteration of the while loop corresponds to a single proposal and takes time O(1).
Hence O(n2) time in all.

�

Note also that O(n2) is linear in the input size.

Lemma 1.8. After the moment w ∈ W is first proposed to, w always holds a proposal.
Proof. Once w holds a proposal, she only rejects it for a better one, and there is no ’unproposing’.

�

In fact, each man does worse with each proposal made, while women are never worse off after
a proposal than before.

Lemma 1.9. The set M returned at the end of the stable marriage algorithm is a matching.
Proof. Suppose, by way of contradiction, that M is not a matching. First, since women can

hold only a single proposal, each m ∈ M and w ∈ W appears at most once in M, so it follows
that some m ∈ M or some w ∈ W is unpaired. These two conditions are equivalent, again since
women can only hold a single proposal, and also because |M | = |W | = n. Hence, we have both an
unpaired man m ∈ M and an unpaired woman w ∈ W . Since m is unpaired, he had no proposal
held at the end of the procedure and so must have proposed to w before termination. Then, by
Lemma 1.8, w could not have been unpaired.

�

Lemma 1.10. If w ∈ W rejects m ∈ M in the stable marriage algorithm, then m and w cannot
be partners in any stable matching.

Proof. Suppose m’s rejection by w is the first to occur such that (m,w) is a pairing in a stable
matching M. w rejected m because she already held or later received a proposal from a better
partner, say m′. Then, so that (m′, w) is not a blocking pair for M, contradicting stability, it must
be that m′ prefers his own partner, w′, in M to w. However, since m′ prefers w′ to w, m′ must
have proposed to and been rejected by w′ before w, contrary to m’s rejection by w being the first
such.

�

Corollary 1.10.1. If in the stable marriage algorithm, m ∈ M proposed to w ∈ W , then, in
any stable matching
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(i) m cannot have a better partner than w;

(ii) w cannot have a worse partner than m.

Proof. m proposed to w since he was rejected by all the women he preferred to w and hence
could not be paired with (by Lemma 1.10), so (i) follows.

Suppose, by way of contradiction, that (m′, w) ∈ M ×W is a pair in some stable matching M,
where w prefers m to m′. Then m is paired with some w′ ∈ W and by (i), m prefers w to w′.
Hence (m,w) is a blocking pair for M, contradicting stability.

�

Theorem 1.11. The stable marriage algorithm computes a man-optimal and woman-pessimal
stable matching in O(n2)-time.

Proof. The O(n2) upper bound follows from Lemma 1.7.
The set M returned is a matching by Lemma 1.9.
M is stable, since if (m,w) ∈ M × W were a blocking pair, then m prefers w to M(m),

contradicting Corollary 1.10.1.(i).
That M is man-optimal and woman-pessimal also follows from Corollary 1.10.1.

�

Corollary 1.11.1. A stable matching M is man-optimal if and only if it is woman-pessimal.

Corollary 1.11.2. There always exists a stable matching, i.e. M := {(m, best(m)) ∈ M ×
W |m ∈ M} = {(worst(w), w) ∈ M ×W |w ∈ W}.

2 Hospitals/Residents (College Admissions)

The hospitals/residents problem is a generalization of the stable marriage problem in which residents
and hospitals are considered instead of men and women, allowing multiple residents to be matched
to a hospital up to its quota. The problem was presented as the college admissions problem and
solved by Gale and Shapley in the same paper as the stable marriages problem, with essentially the
same algorithm, the chief difference being that colleges (hospitals) can hold multiple applications,
up to their quota. In this setting, we do not require that every applicant is assigned to a college or
that every college meets its quota, and we also allow the possibility that a college may prefer not
to accept a particular applicant even when its quota is not met or that an applicant may prefer not
to apply to a particular college even if it would mean not being accepted anywhere.

In the applicant-optimal procedure, when a college receives a new application while its currently
held applicants would meet its quota, it rejects the worst application from the new one and the
ones it already held.

In the college-optimal procedure, colleges make offers to applicants which have not rejected
them up until they have enough offers held to fill their quotas.
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Definition 2.1. An instance of the college admission problem consists of a set A of n ap-
plicants, a set C of m colleges with a quota qc ≥ 1 for each c ∈ C and the (possibly incomplete)
preference lists for all a ∈ A, c ∈ C.

Definition 2.2. An assignment is a set A ⊆ A × C such that each applicant a ∈ A appears
in at most one pair, and each college c ∈ C appears in at most qc pairs.

Definition 2.3. A blocking pair (a, c) ∈ A × C for the assignment A is a pair such that a
and c are in each others’ preference lists and one of the following holds:

(i) c’s quota is met, a prefers c to his current college and c prefers a to at least one of its applicants;

(ii) c’s quota is not met and a prefers c to his current college.

Definition 2.4. An assignment A is stable if there is no blocking pair for it in A× C.
It’s clear that if we had a blocking pair (a, c), then in case (i), c would like to reject its worst

student in order to accept a, and in case (ii), c would simply accept a because it has the room to
do so.

Lemma 1.10 generalizes to both the applicant- and college-optimal algorithms, and it follows
from it that the assignment is stable and, in fact, applicant- or college-optimal, respectively.

For the applicant-optimal procedure, we can represent the list of applicants to a college using a
heap data structure with keys as the applicant ranking for that college, since we only need access
to the worst applicant on the list when a college must reject one. Then this lookup is O(1) and
insertion and deletion are O(log(qc)). For simplicity’s sake, we assume that ∀a ∈ A, c ∈ C, a ∈
L(c) ⇒ c ∈ L(a) to avoid having each college rank every applicant, even those which it would never
accept. Otherwise, when a ∈ A applies to c ∈ C, we must check if a ∈ L(c) and we’d like to do
be able to do this in constant time (in particular, without having to traverse L(c)). For q := the
largest quota greater than or equal to n (or 2 if none, since we only need to reject applications if a
college’s quota is met), the running time will be O(log(q)(n + Σa∈A|L(a)|)) ⊆ O(log(q)nm).

For the college-optimal procedure, there is no need to store each college’s list of applicants;
we need only know how many offers each college has made. Here, we assume that ∀a ∈ A, c ∈
C, c ∈ L(a) ⇒ a ∈ L(c) to avoid having each applicant rank every college, even those to which
they would never apply. The college-optimal algorithm’s running time will be O(m+Σc∈C |L(c)|) ⊆
O(n + m + Σa∈A|L(a)|+ Σc∈C |L(c)|) ⊆ O(nm), where the second of these three is linear.

3 Stable Roommates

The stable roommates problem also generalizes stable marriages: instead of separate sets of men
and women, there is only a single set of n individuals, each with a list the other n− 1 individuals
sorted by preference. In the paper ”An Efficient Algorithm for the ”Stable Roommates” Problem”,
Irving gave an O(n2)-time algorithm to find a stable matching if one exists, and reporting that
none exists, otherwise.
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Definition 3.1. An instance of the stable roommates problem is a set of X of individuals,
with size n ∈ N, and for each x ∈ X, a preference list L(x), that is a permutation of the remaining
individuals in X.

We may assume X = {1, 2, . . . , n}.
Again, we say x prefers y to z, if y appears before z in L(x).
Preference lists (not necessarily the original ones) together are called a (preference) table, and

a table T ′ is a subtable of a table T , if x ∈ X is in y ∈ X’s list in T ′ implies the same in T and x
comes before z on y’s list in T ′ implies the same in T .

A table for the instance is a subtable of the original table. Since the instance is understood
to be fixed, we will usually just refer to a table for the instance just as table.

Definition 3.2. A matching for an instance of the stable roommates problem is a bijection
M : X → X such that M(x) 6= x for all x ∈ X and M(x) = y iff M(y) = x (or M(M(x)) = x for
all x ∈ X, i.e. M is its own inverse).

Note that M = {(x,M(x)) ∈ X ×X|x ∈ X}.
It follows from this definition that n must be even for a matching to exist, since we do not allow

x ∈ X to be alone (M’s domain is X) or matched with himself (M(x) 6= x).
Equivalently, we can define a matching as a set of unordered pairs in P(X) (the power set of

X) where each individual appears in exactly one pair. In this case, any matching must have size
n/2.

Blocking pair and stable matching/solution and possible pairing (possible partner)
are defined again as in Definitions 1.3, 1.4 and 1.5.

Any stable matching for a stable marriage instance will be a solution to the stable roommates
instance constructed by adding to the end of each man’s preference list the remaining men and
doing the same for the women. Like the stable marriage problem, then, a stable roommates instance
may have multiple solutions. Unlike the stable marriage problem, however, not every instance of
the stable roommates problem has a solution, e.g.

1 [2 3 4]
2 [3 1 4]
3 [1 2 4]
4 [1 2 3]

There are three matchings, but each has a blocking pair:
{(1,2), (3,4)} is blocked by (2,3); {(1,3), (2,4)}, by (1,2); and {(1,4), (2,3)}, by (1,3).
Note that by the symmetry of the instance, 4’s list can actually be an arbitrary permutation of

{1, 2, 3} , and the same will still hold.

Irving’s algorithm is split up into two phases, the first of which is similar to the stable marriage
algorithm, but we now allow anyone to propose or hold proposals (and even both). In pseudocode:

Phase 1
while there remains x ∈ X who has no proposal held and has not proposed to everyone, do

next := the next on x’s list to whom x has not yet proposed
x proposes to next
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if next holds no proposal, then
next holds x’s proposal

else y := the individual from whom next holds a proposal
if next prefers y to x, then next rejects proposer
else

next rejects y
next holds x’s proposal

In words, we let those who have no proposal held to propose to the individual they prefer most
of those to whom they’ve not already proposed, if one exists, but if there is no such individual left,
then we stop the procedure.

We assume again that we have a ranking matrix for the individuals as we described in Lemma
1.7, and if not, we can construct one in O(n) time. Then, we can use a linked list to implement
the set of individuals who have no proposal held, so that insertion and deletion are O(1), resulting
in O(n) preprocessing time to copy X. Alternatively, we can traverse X letting proposer be each
individual in turn with a nested while-loop inside that updates proposer to y if y is rejected by next,
so that rejected individuals have priority in proposing. In either case, the operations inside the
loop(s) are O(1) all together and each iteration corresponds to a single proposal (except possibly
the last, if there is no stable marriage), of which most (n− 1)2, so the procedure takes O(n2) time.

Results corresponding to Lemma 1.8, Lemma 1.10, Corollary 1.10.1, which were adapted from
Irving’s original paper, hold again in this setting with nearly identical proofs (so they are omitted
here):

Lemma 3.3. After the moment x ∈ X is first proposed to, x always holds a proposal.

Lemma 3.4. If y ∈ X rejects x ∈ X in Phase 1, then x and y cannot be partners in any stable
matching.

Corollary 3.4.1. If during Phase 1, x ∈ X proposed to y ∈ X, then, in any stable matching

(i) x cannot have a better partner than y;

(ii) y cannot have a worse partner than x.

Corollary 3.4.2. If after Phase 1, x ∈ X has no proposal held and has proposed to everyone
on his list, then no stable matching exists.

Proof. x was therefore rejected by everyone, so by the Lemma, cannot be partners with anyone
in a stable matching.

�

Then we would exit reporting so, as we should, but after we find that an individual’s list becomes
empty after the following reductions to the original table:

Corollary 3.4.3. If, after Phase 1, y ∈ X holds a proposal from x ∈ X, then y’s preference
list can be reduced (without eliminating possible partners) by deleting from it
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(i) all those to whom y prefers x (i.e. all those after x);

(ii) all those who hold a proposal from a person whom they prefer to y (including those who have
rejected y, i.e. all those before x);

In the resulting table,

(iii) y is first on x’s list; and x, last on y’s;

(iv) in general, b appears on a’s list if and only if a appears on b’s.

Proof. (i) and (ii) follow from Corollary 3.4.1.(ii); and (iii), from (i) and the parenthesized part
of (ii). For (iv), suppose a holds a proposal from c; and b, from d. Then a is on b’s list ⇐⇒ b
does not prefer d to a (by (i)), and a does not prefer c to b (by (ii)) ⇐⇒ a is on b’s list (by (ii)
and (i)).

�

We will refer to this table as the Phase 1 table.

In fact, for a particular instance, the Phase 1 table is always the same. When no list is empty,
the resulting table is an example of a stable table:

Definition 3.5. A table T for an instance is stable if, in T :

(i) x is first in y’s list, abbreviated fT (x) = y, iff y is last in x’s list, abbreviated lT (y) = x;

(ii) for x, y ∈ X, x is not in y’s list iff y is not in x’s iff x prefers lT (x) to y or y prefers lT (y) to
x (in the original table);

(iii) no list is empty.

(i) and (iii) imply that fT and lT are inverse functions X → X, and so must both be bijective,
i.e. injective and surjective.

Note that once all of the fT (x) are determined (or all of the lT (x) are), then the whole table is
determined by (ii).

It should be clear that any table can be made so that (i) and (ii) hold by reducing the lists,
although a list may become empty in doing so. In fact, any table for which (i) and (ii) hold is a
subtable of the Phase 1 table, and the reductions to obtain the Phase 1 table are exactly those
necessary to establish (i) and (ii):

Lemma 3.6. Definition 3.5.(i) and (ii) hold for the Phase 1 table, and so if no list is empty,
the table is stable.

Furthermore,
Lemma 3.7. If each list in a stable table T contains exactly one person, then they specify a

stable matching.
Proof. By Definition 3.5.(i), the lists specify a matching.
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Suppose that (x, y) ∈ X × X but x and y are not paired in the matching. Then x and y are
not in each others’ lists in T . Then, by Definition 3.5.(ii), x prefers the last (i.e. sole) person on
his list to y, or y, the last (i.e. sole) person on his list, to x, so that (x, y) cannot be a blocking
pair. The matching is therefore stable.

�

Then, using Lemma 3.6, the following holds:

Corollary 3.7.1. If each list in the Phase 1 table contains exactly one person, then they specify
a stable matching.

Before we include Phase 2 of the algorithm in pseudocode, we describe and justify it.
We prove that at each step until termination, Definition 3.5.(i) and (ii) hold. The base case is

established by Lemma 3.6. Hence, if the reduced lists contain exactly one person each, then we are
done by Lemma 3.7 (Corollary 3.7.1). Otherwise, at least one is empty, in which case, we will see
that there is no stable matching so that we end the procedure, or at least one has more than one
person in it. In this last case, we will search for a rotation (an ”all-or-nothing cycle” in Irving’s
original paper) and eliminate it: we reduce the preference lists again with respect to this rotation
in such a way that Definition 5.(i) and (ii) continue to hold. If any list becomes empty, we exit
reporting that no stable matching exists. Otherwise, the inductive step holds.

Definition 3.8. A rotation in a stable table is a cyclic sequence
(a1, b1), (a2.b2), . . . , (ar, br) ∈ X ×X of pairs of individuals such that, where ar+1 = a1 and br+1 =
b1:

(i) the ai are distinct;

(ii) bi is first on ai’s list (fT (ai) = bi) for each i; equivalently, ai is last on bi’s list for each i
(lT (bi) = ai);

(iii) bi+1 is the second on ai’s list for each i.

First, note that ai is in bi+1’s list for each i.
Then, a rotation can be depicted in the following way with respect to the reduced preference

lists in the stable table:

a1 [ b1 b2 . . . ] b1[ . . . ar . . . a1]
a2 [ b2 b3 . . . ] b2[ . . . a1 . . . a2]
a3 [ b3 b4 . . . ] b3[ . . . a2 . . . a3]

...
...

ai [ bi bi+1 . . . ] bi[ . . .ai−1 . . . ai]
...

...
ar−1 [ br−1 br . . . ] br−1[ . . .ar−2 . . .ar−1]

ar [ br b1 . . . ] bi[ . . .ar−1 . . . ar]
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We observe that a rotation is completely determined once one ai or bi is known: once ai is
known, (iii) gives us bi+1 and (ii), ai+1; once bi is known, (ii) gives us ai and we repeat the previous
argument. It then follows that since the ai are all distinct, so must be the bi.

Also, note that the length of the rotation is r ≥ 2, since otherwise b1 = b2, so that b1 = b2 is
both first and second on a1’s list, a contradiction.

Lemma 3.9. A stable table in which a list has length at least 2 contains a rotation.
Proof. To find a rotation, we let p1 ∈ X be an individual whose list has length at least 2, and

define, inductively:
qi+1 = the second in pi’s reduced list
pi+1 = the last in qi+1’s reduced list (so qi+1 is first in pi+1’s)
until this sequence repeats some ps, so that ps+r = ps. It follows that each pi will have at least

2 individuals on his reduced list, for if pi has only qi on his list and i is the least such that this
occurs, then qi must have only pi on his list by Definition 3.5.(i), because qi is both the first and
the last on pi’s list. By uniqueness, it follows that pi = pi−1, contradicting i being the least. Hence,
we can, in fact, choose qi+1 at each step.

Then, we let ai = ps+i−1 for i = 1, . . . , r and bi = qs+i−1, for i = 1, . . . , r to give us a rotation,
and we call p1, . . . , ps−1 the tail for the rotation.

�

Tails are not generally unique for a rotation, since instead of starting our search from p1, starting
from any other pj would have also lead to the same rotation. Also, tails may be empty, as is the
case when p1 = a1.

Then, having found a rotation, we eliminate the rotation: we force each bi to reject ai and have
each ai propose to bi+1, reducing the preference lists again to satisfy Definition 3.5.(i) and (ii) and
proving the inductive step in our reductions. Hence x ∈ X and y ∈ X are removed from each
other’s lists in the rotation elimination if (and only if) one of them is bi for some i and the other
succeeds ai−1 in bi’s list. The result for the cycle is that, for each i:

ai [ bi bi+1 . . . ] becomes ai [ bi+1 . . . ], and
bi [ . . . ai−1 . . . ai] becomes bi [ . . . ai−1].
Additionally, we remove bi from the lists of the successors of ai−1 in bi’s list, so that the removals

remain symmetric.

Lemma 3.10. If there exists a rotation (a1, b1), . . . , (ar, br) in a stable table T and the table
resulting from the elimination of this rotation, T ′, has no empty list, then T ′ is a stable subtable
of T ′:

(i) fT ′(ai) = bi+1 for each i;

(ii) lT ′(bi) = ai−1 for each i;

(iii) fT ′(x) = fT (x) for x ∈ X, x 6= ai for each i, and lT ′(x) = lT (x) for x ∈ X, x 6= bi for each i;

(iv) if p1, . . . , ps−1 is a tail (as described in Lemma 3.9) for the rotation and the 2nd on pj ’s list
changes after the rotation elimination, then either pj is matched in T ′ or j = s − 1 (i.e. the
last on the tail), but not both.
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Proof. Stability of T ′ and (i)-(iii) follow from the way we eliminate rotations.
For (iv), suppose pj ’s 2nd value changed from qj+1 ∈ X after the rotation elimination. Then

this occurred either because fT (pj) was removed from pj ’s list and vice-versa (so fT ′(pj) = qj+1 or
qj+1 was also removed) or pj and qj+1 were removed from each other’s lists, so that one of them is
bi for some i and the other succeeded ai−1 in bi’s list before the rotation was eliminated.

If fT (pj) was removed from pj ’s, then by (i) and (iii), it follows that pj = ai for some i, contrary
to pj being in the tail. Hence, pj = bi or qj+1 = bi for some i.

If pj = bi, then pj prefers ai−1 to qj+1, where both were on his list but qj+1 was 2nd, so that
ai−1 was first, i.e. fT (pj) = ai−1, and since lT ′(pj) = lT ′(bi) = ai−1, ai−1 is the only individual
remaining on pj ’s list and vice-versa by Definition 3.5.(i), so that pj = bi and ai−1 are matched.

Otherwise qj+1 = bi, i.e. the second on pj ’s list was bi and so pj+1 was last on bi’s list, i.e.
pj+1 = ai. Then pj was not among the ak but pj+1 was, so that pj+1 must have been the first, i.e.
pj+1 = a1 and so j = s− 1 (and i = 1).

Why not both? I was unable to prove this (or find a proof).

�

The following lemma, whose proof we leave as an exercise, justifies rotation elimination:

Lemma 3.11. Let (a1, b1), . . . , (ar, br) be a rotation in a stable table T . Then,

(i) in any stable matching contained in T , either ai and bi are partners for all values of i or for
no value of i;

(ii) if there is such a stable matching in T in which aj and bj are partners, then modifying it so
that ai and bi+1 are instead partners for each i also gives a stable matching.

Then, the following two results follow immediately, by induction on the Phase 2 steps outlined
earlier:

Corollary 3.11.1. If the original problem instance admits a stable matching, then there is a
stable matching contained in any of the tables in the sequence of reductions.

Corollary 3.11.2. If one or more among the lists in one of the tables in the sequence is empty,
then the original problem instance admits no stable matching.

With that above two corollaries, we’ve proven the correctness of the procedure, whose remainder
we now include:

Phase 2
reduce the preference lists as described in Corollary 3.4.3
if any list becomes empty during the reductions, then

exit the procedure reporting that there is no stable matching
if, after the reductions, each list has a unique individual in it, then

return M := {(x, y) ∈ X ×X | y is in x’s reduced list}
while there remains an individual in X with at least 2 in his reduced list, do
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find a rotation using the tail of the previous one (if any)
eliminate the rotation
if any list becomes empty during the reductions, then

exit the procedure reporting that there is no stable matching
return M := {(x, y) ∈ X ×X | y is in x’s reduced list}

The only issue that remains to implement Phase 2 efficiently.
In the first reduction after Phase 1, we keep track of the first individual in X whose reduced

list has size at least 2, called first unmatched.

When Phase 2 starts, to find rotations, we first store an array of length n with entry i indicating
whether we’ve ’visited’ i ∈ X in our search for a rotation. We of course initialize each entry to
’unvisited’. Then, at each step in which we search for a rotation, we store a linked list of visited
individuals, the pi, for i = 1, . . . , s + r− 1, and mark them as visited in the array until we find one
that’s already been visited, starting with p1 = first unmatched for the first rotation. We eliminate
the rotation we’ve found and then ’unvisit’ all of the ai and remove them from our list.

If there is no tail from the previous rotation, we start at first unmatched (which may have to
be updated beforehand).

If there is a tail, we start our search from ps−1, the last individual in the tail, to avoid repeating
the sequence p1, . . . ps−1. This is justified by Lemma 3.10, since we have two possibilities. The first
is that our new search starting from p1 will lead back to ps−1 as the 2nd individuals on the pj ’s
lists up to but not necessarily including j = s − 1 (by (iv)) as well as the last individuals on the
qjs’ lists (up until the rotation) remained the same (by (iii)). The second possibility is that once pj

is repeated for some j > s− 1 in our new search, it will follow that each pk, for k ≥ j, will have at
least 2 on his list by induction (in the same way we guaranteed each pi had at least two on his list
for each i to prove Lemma 3.9), so that those pk are still unmatched and hence the 2nd on their
lists remained the same after eliminating the rotation (by (iv)).

Furthermore, reducing the preference lists can be done implicitly by storing the indices of
the first, second and last person on an individual’s list that should remain in the reduced list
and updating these as necessary. We store arrays for these, where f [x], s[x] and l[x] are the
corresponding values for x. Then, with the ranking matrix, each removal can then be done in
constant time, since it just means comparing the rank of an individual to be removed with the
indices of the first and last and updating these appropriately. We only update the value of s[x]
during the search for a cycle, and the new value can be found by traversing x’s list from s[x] until
we find some p who prefers x to l[p], i.e. p and x are in each others’ reduced lists, and we update
s[x] := p.

Theorem 3.12. The running time of Irving’s algorithm is O(n2).
Proof. Phase 1 takes O(n2) time. Since each removal takes constant time and there are at most

n(n−2)+1 removals (n for each individual, n−2 to reduce an individual’s list to a single individual
and the +1 in the case that one list becomes empty and we stop there), so all removals together in
all reductions require O(n2) time. Checking whether a stable matching is found and constructing
it also takes O(n2) time, as we only scan the list X and pair each x ∈ X with f [x] = l[x].

first unmatched is updated at most n times and s[x], at most n − 1 times for each x, corre-
sponding to traversing the lists from left to right at most once, so together, this is again O(n2).
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All that remains is to show that the time spent finding rotations is also O(n2):
If m rotations are found and eliminated during the entire procedure, we let ti and ri denote the

lengths of the tail and the rotation for the ith rotation. For i = 1, . . . m, finding the ith rotation
took at most c + d(ri + ti − ti−1) + eri operations, for some constants, c, d, e > 0, since ri + ti is
the number of individuals in the list of pj , but the first ti−1 were already visited in the search for
the i− 1th, so we do not revisit them, and we only visit ri + ti − ti−1 new individuals at this step
(where t0 = 0, hence d(ri + ti − ti−1). Also, after the search, we unvisit the aj of the cycle, hence
eri.

Note also that since the elimination of the ith rotation means at least 2ri removals from the
preference lists, and ri ≥ 2 for each i, so that

4m ≤ 2Σm
i=1ri ≤ n2

Then, taking the sum over all the rotations, we get at most

Σm
i=1[c + d(ri + ti − ti−1) + eri] = cm + (d + e)Σm

i=1ri + d(tm − t0)

≤ c

2
n2/4 +

d + e

2
n2 + dn,

which is O(n2).

�

4 Alternate Algorithm for Stable Roommates

Phase 1 and the first part of Phase 2 corresponding to the reductions for Corollary 3.4.3 can
be replaced by the following equivalent algorithm (i.e. it produces the same table for any given
instance):

Phase 1
while there remains an individual x ∈ X who has no proposal to another held, do

if x’s list is empty, then
exit the procedure reporting that no stable matching exists

y := the first individual left on x’s list
x proposes to y
if y holds a proposal from z, then

y rejects z’s proposal
for each successor x′ of x in y’s list (which includes z)

remove x′ and y from each other’s lists
y holds x’s proposal
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The deletions ensure that no one worse than y’s current partner is even allowed to propose to
y, so that, in a sense, y rejects them before they even get to chance to propose, since if they were
to propose, they would be rejected, anyway.

Additionally, proposals made by an individual are again made to worse partners at each step,
as in the stable marriage algorithm. Proposals received are also better after each one, since we
prevent worse proposals to be made.

We note that if y holds a proposal from z, then z successors in y’s list were removed, and y
was removed from their lists. Then if x later proposes to y, it means that x was not among z’s
successors, and also that z’s successors in y’s list are among x’s. Hence, even if x had proposed
before z (preventing z from later proposing), the result would have been the same, i.e. the removal
of x’s successors in y’s list and of y from their lists. From this it follows that the table resulting
from Phase 1 is always the same, no matter the order in which proposals are made.

The algorithms for the stable marriage and hospitals/residents problems can be modified in the
same way, too.

5 Exercises

5.1 Lemma 3.10. Prove Lemma 3.10. Hint: for (ii), first consider the case where ai = bj for some
i, j and use (i).

5.2 Geometric Stable Roommates. Consider the stable roommate problem where the individ-
uals are elements of the real numbers, R and x prefers y to z iff |x − y| < |x − z|, i.e. the norm
replaces the preference lists, and assume there are no ties. Describe an algorithm to find a stable
matching in Θ(nlog(n))-time. Hint: dynamic binary search trees.

What about the vector space Rd for d ∈ Z+, where x = (x1, x2, . . . , xd) and |x| =
√

(x1)2 + · · ·+ (xd)2?

5.3 Median Matching. Given a stable roommates instance with a solution, let S be a subset of
all the stable matchings such that |S| is odd. Show that M, defined by M(x) := the x’s median
partner in all matchings in S, is a stable matching. Hint: first consider the case where S contains
only 3 stable matchings.
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