
Stable Roommates

Michael St. Jules

November 16, 2013

Numberings of definitions and results are the same as in my
project for consistency.

Definitions.
An instance of the stable roommates problem is a set of
X = {1, 2, . . . , n} of individuals and for each x ∈ X , a preference
list L(x), that is a permutation of the remaining individuals in X .

x prefers y to z , if y appears before z in L(x).

Preference lists (not necessarily the original ones) together are
called a (preference) table, and a table T ′ is a subtable of a table
T , if x ∈ X is in y ∈ X ’s list in T ′ implies the same in T and x
comes before z on y ’s list in T ′ implies the same in T .
Tables are with respect to the instance, i.e. subtables of the
original table.

A matching for an instance of the stable roommates problem is a
bijection M : X → X such that M(x) 6= x for all x ∈ X and
M(x) = y iff M(y) = x .
M = {(x ,M(x)) ∈ X × X |x ∈ X}.
Note: n must be even for a matching to exist.

A pair (x , y) ∈ X × X is a blocking pair for the matching M if x
and y both prefer each other to their own partners in M.
A matching M is stable or a solution, if there is no blocking pair
in X × X for M.

Not every instance of the stable roommates problem has a
solution, e.g.

1 [2 3 4]
2 [3 1 4]
3 [1 2 4]
4 [1 2 3]

Three matchings, but each has a blocking pair:
{(1,2), (3,4)} is blocked by (2,3); {(1,3), (2,4)}, by (1,2); and
{(1,4), (2,3)}, by (1,3).

Irving’s algorithm: 2 phases, Phase 1 is like the G-S stable
marriage algorithm:

Phase 1
while ∃x ∈ X who has no proposal held and has not proposed to
everyone, do

next := the next on x ’s list to whom x has not yet proposed
x proposes to next
if next holds no proposal, then

next holds x ’s proposal
else y := the individual from whom next holds a proposal

if next prefers y to x , then next rejects proposer
else

next rejects y
next holds x ’s proposal

Lemma 3. After the moment x ∈ X is first proposed to, x always
holds a proposal.

Lemma 4. If y ∈ X rejects x ∈ X in Phase 1, then x and y
cannot be partners in any stable matching.

Corollary 4.1. If during Phase 1, x ∈ X proposed to y ∈ X , then,
in any stable matching

(i) x cannot have a better partner than y ;

(ii) y cannot have a worse partner than x .

Corollary 4.2. If after Phase 1, x ∈ X has no proposal held and
has proposed to everyone on his list, then no stable matching
exists.

Corollary 4.3. If, after Phase 1, y ∈ X holds a proposal from
x ∈ X , then y ’s preference list can be reduced (without eliminating
possible partners) by deleting from it

(i) all those to whom y prefers x (i.e. all those after x);

(ii) all those who hold a proposal from a person whom they
prefer to y (including those who have rejected y , i.e. all those
before x);

In the resulting table,

(iii) y is first on x ’s list; and x , last on y ’s;

(iv) in general, b appears on a’s list if and only if a appears on b’s.

We will refer to this table as the Phase 1 table.
For a particular instance, the Phase 1 table is always the same.

Definition 5. A table T for an instance is stable if, in T :

(i) x is first in y ’s list, abbreviated fT (x) = y , iff y is last in x ’s
list, abbreviated lT (y) = x ;

(ii) for x , y ∈ X , x is not in y ’s list iff y is not in x ’s iff x prefers
lT (x) to y or y prefers lT (y) to x (in the original table);

(iii) no list is empty.

fT and lT are inverse functions X → X .
Note that once all of the fT (x) are determined (or all of the lT (x)
are), then the whole table is determined by (ii).

Lemma 6. Definition 5.(i) and (ii) hold for the Phase 1 table, and
so if no list is empty, the table is stable.

Lemma 7. If each list in a stable table T contains exactly one
person, then they specify a stable matching.

Proof. By Definition 5.(i), the lists specify a matching.
Suppose that (x , y) ∈ X × X but x and y are not paired in the
matching. Then x and y are not in each others’ lists in T . Then,
by Definition 5.(ii), x prefers the last (i.e. sole) person on his list
to y , or y , the last (i.e. sole) person on his list, to x , so that (x , y)
cannot be a blocking pair. The matching is therefore stable.

�

Corollary 7.1. If each list in Phase 1 table contains exactly one
person, then they specify a stable matching.

Phase 2 overview:
We prove that at each step until termination, Definition 5.(i) and
(ii) hold:

Base case: Lemma 6 (exit reporting that no stable matching exists
if any list is empty).

Inductive step:

1. reduced lists contain exactly one person each: done by
Lemma 7.

2. at least one list is empty: end the procedure since no stable
matching.

3. no empty list, but one has at least 2 in it: search for a
rotation and eliminate it, i.e. reduce the preference lists again
with respect to this rotation in such a way that Definition
5.(i) and (ii) continue to hold. If any list becomes empty, we
exit reporting that no stable matching exists. Otherwise, the
inductive step holds.

Need to justify 2 and 3.

Definition 8. A rotation in a stable table is a cyclic sequence
(a1, b1), (a2.b2), . . . , (ar , br) ∈ X × X of pairs of individuals such
that, where ar+1 = a1 and br+1 = b1:

(i) the ai are distinct;
(ii) bi is first on ai ’s list (fT (ai) = bi) for each i ; equivalently, ai

is last on bi ’s list for each i (lT (bi) = ai);
(iii) bi+1 is the second on ai ’s list for each i .

a1 [b1 b2 . . .] b1[. . . ar . . . a1]

a2 [b2 b3 . . .] b2[. . . a1 . . . a2]

a3 [b3 b4 . . .] b3[. . . a2 . . . a3]

...
...

ai [bi bi+1 . . .] bi [. . .ai−1 . . . ai]

...
...

ar−1 [br−1 br . . .] br−1[. . .ar−2 . . .ar−1]

ar [br b1 . . .] bi [. . .ar−1 . . . ar]

Lemma 9. A stable table in which a list has length at least 2
contains a rotation.

Proof. To find a rotation, we let p1 ∈ X be an individual whose list
has length at least 2, and define, inductively:
qi+1 = the second in pi ’s reduced list
pi+1 = the last in qi+1’s reduced list (so qi+1 is first in pi+1’s)
until this sequence repeats some ps , so that ps+r = ps .

Definition 5.(i) ensures that pi will have at lest 2 individuals in his
reduced list so that we can choose qi+1 at each step.

Let ai = ps+i−1 for i = 1, . . . , r and bi = qs+i−1, for i = 1, . . . , r
to give us a rotation.

We call p1, . . . , ps−1 the tail for the rotation.

�

Having found a rotation,
• eliminate the rotation: force each bi to reject ai and have each
ai propose to bi+1

• x ∈ X and y ∈ X are removed from each other’s lists in the
rotation elimination if (and only if) one of them is bi for some i
and the other succeeds ai−1 in bi ’s list.

ai [bi bi+1 . . .] becomes ai [bi+1 . . .], and
bi [. . . ai−1 . . . ai] becomes bi [. . . ai−1].
remove bi from the lists of the successors of ai−1 in bi ’s list.

Lemma 11. Let (a1, b1), . . . , (ar , br) be a rotation in a stable
table T . Then,

(i) in any stable matching contained in T , either ai and bi are
partners for all values of i or for no value of i ;

(ii) if there is such a stable matching in T in which aj and bj are
partners, then modifying it so that ai and bi+1 are instead
partners for each i also gives a stable matching.

Corollary 11.1. If the original problem instance admits a stable
matching, then there is a stable matching contained in any of the
tables in the sequence of reductions.

Corollary 11.2. If one or more among the lists in one of the tables
in the sequence is empty, then the original problem instance admits
no stable matching.

Correctness of the algorithm follows.

Phase 2
reduce the preference lists as described in Corollary 4.3
if any list becomes empty during the reductions, then

exit the procedure reporting that there is no stable matching
if, after the reductions, each list has a unique individual in it, then

return M := {(x , y) ∈ X × X | y is in x ’s reduced list}
while there remains an individual in X with at least 2 in his
reduced list, do

find a rotation using the tail of the previous one (if any)
eliminate the rotation
if any list becomes empty during the reductions, then

exit the procedure reporting that there is no stable
matching
return M := {(x , y) ∈ X × X | y is in x ’s reduced list}

Theorem 12. The running time of Irving’s algorithm is O(n2).

Proof. We set up a ranking matrix, such that rank[x , y] = i ⇔ y is
ith on x ’s original list, to check preferences in constant time.
• Setting up the ranking matrix : O(n2).
• Phase 1 : O(n2).
• All removals (Phase 1 and 2): O(n2).
• Checking and constructing a stable matching: O(n2).
• Time spent finding rotations + updating maintained values (in a
”careful implementation”): O(n2).

”Careful implementation”:
• store the first unmatched individual in X
• store the first, second and last in the list of each x ∈ X for
implicit removals
• start search the for a rotation at the end of tail of the previous
rotation (if any) and otherwise at the first unmatched.

�

