Course 95.573 Term Paper

Faster Shortest-path Algorithms

for

 Planar Graphs

Instructor: Anil Maheshwa

Student name: Puping Peng (310924)

Siemens Canada Ltd.

email: philip.peng@tic.siemens.ca

Oct 26, 2001

Table of Contents

2ABSTRACT

3REFERENCES

41.
Introduction

42.
Basic Techniques for Shortest Path Algorithms

42.1
Shortest-Path Conditions

42.2
Relaxation

52.3
Graph Decomposition

52.3.1
Definitions

63.
Review of Shortest-path Algorithms

63.1
Dijkstra's Algorithm

73.2
Graph Decompositions

73.2.1
Tarjan& Lipton's Approaches

73.2.2
Frederickson's Approaches

73.2.3
Graph Decomposition Lemmas

83.3
Summary of Previous Approaches

84.
New Approaches Towards Linear Time for SP

84.1
The Big Ideas

94.2
Simplified Algorithms With Only Two Division

94.2.1
Initialization:

94.2.2
Repetition:

94.2.3
Termination

94.2.4
Proof of correctness

104.2.5
Analysis

114.4
Linear Time SP Computation With R-Recursive Division

115.
Linear Time Recursive Divisions

126.
Conclusions

Faster Shortest-path Algorithms

for Planar Graphs

By Puping Peng (ID: 310924)

Email: Philip.Peng@tic.siemens.ca

Instructor: Prof. Anil Maheshwa

ABSTRACT

In this term paper, the author summarized the skills used in Shortest-path algorithms, and the history and development of the SP algorithms. The main ideas of this paper was presented and exemplified by a simplified version of this algorithm using 3 level of recursive divisions, which gives O(loglogn) complexity. A linear algorithm with O(logn) recursive divisions was briefly reviewed in this paper for nonnegative edge-lengths.

REFERENCES

1. Monika R. Henzinger, Philip Klein, Satish Rao and Sairam Subramanian, "Faster Shortest-path Alorithms for Planar Graphs", draft paper for Reviews.

2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, "Introduction to Algorithms", Second Edition, McGraw Hill Press, 2001.

3. M.L. Fredman & R.E. Tarjan, "Fibonacci heaps and their uses in improved network optimization algorithms", Journal of the Association for Computing Machinery 34(1987), 596-615.

4. G. N. Frederickson, "Fast algorithms for shortest paths in planar graphs, with applications", SIAM Journal on Computing 16(1987), 1004-1022.

5. R. J. Lipton and R. E. Tarjan, "A Separator Theorem for Planar Graphs", SIAM Journal of Applied Mathematics 36(1979), 177-189.

Faster Shortest-path Algorithms

for Planar Graphs

1. Introduction

Computing shortest path is a fundamental problem of great practical use in reality. It not only solves problems such as network switching, autoroute systems but also the basis of the solutions for other problems.

Planar graph was used as the mathematical model to study the shortest path problems. Dijkstra's algorithm is the classic solution to the shortest path problem. Because of the expensive priority queue operation in Dijkstra's algorithm for a large graph, much of the improvement was focused on using divide-conquer strategy to divide the graph into smaller regions, namely, graph decomposition, thus to improve the total computation time.

This report is based on M. R. Henzinger, et al's(1) paper "Faster shortest-path algorithms for planar graph". The author intends to present the main ideas of this paper in a way of easy understanding and only limited the contents to main ideas for non-negative edge weight planar graphs. Much of the details were skipped.

2. Basic Techniques for Shortest Path Algorithms
2.1
Shortest-Path Conditions

It is well known that the labels give correct shortest path distances if the following shortest path conditions are satisfied.

1: d(s) = 0

2: every label d(v) is an upper bound on the distance and

3: every edge is relaxed.

2.2
Relaxation

Relaxation is a basic technique used to find shortest path in a graph. The relaxation of an edge can be view as a relaxation of the constraint d[v] <= d[u] + w(u, v). A relax operation is defined by:

RELAX(u, v, w)

if d[v] > d[u] + w(u, v)

then d[v] = d[u] + w(u,v)

([v] = u

The process of relaxing an edge (u,v) consists of testing whether we can improve teh shortest path to v found so far by going through u and , if so, updating d[v] and ([v]. A relaxation step may decrease the value of the shortest-path estimate d[v] and update v's predecessor fileld ([v].

2.3
Graph Decomposition

Graph decomposition is one of the basic techniques used by many researchers to reduce the complexity of shortest path algorithm.

2.3.1
Definitions

Separators:

Given an V-node planar graph, one can in linear time to find a set of nodes of size n >=1 nodes whose removal breaks the graph into pieces. These nodes were called separators.

S-Balanced Node-separator

For a graph G and a node subset S, an S-balanced node separator is a set of nodes whose removal break G into two pieces such that each piece contains at most an (fraction of the nodes of S (normally 1/2< (<1). The size of the separators is the number of nodes it contains.

f-separable Graph:
For a function f, a class of graphs that is closed under taking subgraphs is said to be f-separable if for any n>1, an n-node graph in the class has a separator of size O(f(n)). All planar graphs belong to this class.

Graph Division & Regions:

A division of a graph is a partition of the edge-set into two ore more subsets. Each subset of the edge-set is called a region.

Atomic Regions:

A region without subregions is called atomic region.

Boundary Nodes:

The nodes contained in more than one region is called boundary nodes.

r-Division

An r-division of an n-node graph is a division into O(n/r) regions, each containing at most r nodes including O(
[image: image1.wmf]r

) boundary nodes.

(r,s)-Division

An (r, s) -division of an n-node graph is a division of the Graph into O(n/r) regions, each containing at most rO(1) nodes, each having at most s boundary nodes. It is a strict division if each region has at most r nodes.

Recursive Division:

If we repeatedly divide the regions of an (r,s)-division to get smaller and smaller regions, we get a recursive division of the graph. A more formal definition will be:

For a non-decreasing positive integer function f and a positive integer sequence r=(r0, r1, r2 ,,,,rk), an (r, f)-recursive division of an n-node graph G is defined recursively as follows: The recursive division contains one region RG consisting of all of G. If G has more than one edge and r is nonempty, then in addition the recursive division contains an (r,, f(r,))-division of G and (r', f)-recursive division of each of its regions, where r'=(r0, r1, …rk-1).

Recursive Division Tree

Let R is a region of G and divided into region R1, R2, …Rn, we say R1, R2, …Rn are the children of R, and R is the parent of R1, R2, …Rn. We can recursively divide R's children into smaller regions R1', …Rk', the relationship of the regions can be represented as a tree structure, we call this tree is a recursive division tree. The level of a recursive division is the level of the tree and denoted by l(R). The root of the tree represents the region consisting of all of G, the children of the root represent the subregions into which that region is divided, and so on. Each leaf represents a region containing exactly one edge.

3. Review of Shortest-path Algorithms

3.1
Dijkstra's Algorithm

Strategy

expanding the SP from source, relax all outgoing edges in the expanded area until all edges are relaxed.

Algorithm

DIJKSTRA(G, w, s)

INITIALIZE-SINGLE-SOURCE(G, s)

S = 0

Q = V[G]

while Q != 0

do u = EXTRACT-MIN(Q)

S = S U {u}

for each vertex v (Adj[u]

do RELAX(u, v, w)

Running time: V * the cost of EXTRACT-MIN(Q)

Problem with Dijkstra's Algorithm: Priority Queue

The Improvements of Dijkstra's algorithms are tightly related to graph decomposition using a divide-conquer strategy.

3.2
Graph Decompositions

3.2.1
Tarjan& Lipton's Approaches

Tarjan and Lipton (5) described a linear time algorithm to find a set of separators of size O(
[image: image2.wmf]n

) nodes whose removal breaks the graph into pieces, each of piece of size at most
[image: image3.wmf]3

2

n.

3.2.2
Frederickson's Approaches

Strategy and Algorithm

Frederickson(4) developed the first algorithm to beat the O(nlogn) time bound for SP problem. His main ideas is as follows:

· Using multiple priority queues of different sizes

· Recursively apply Lipton and Tarjan's separator-algorithm to obtain r-division in O(nlogn) time.

· 3 level of Decomposition of the graph to smaller regions

· do Dijkstra's algorithm within each region.

Since each region is small, so the Dijkstra calculation is smaller in each region, the queue operation is cheaper. The main thrust of his algorithm performs a Dijkstra calculation on the graph consisting of the boundary nodes of the regions. Although the priority queue is fairly large but the number of boundary nodes are significantly smaller than n, the number of queue operations is also much smaller than n.

He also used a topology-based heap as data structure in the main algorithm. Frederickson's algorithm give an improved time bound O(nlogn).

3.2.3
Graph Decomposition Lemmas

The following lemmas are adapted directly from Frederickson's algorithm.

Lemma 1:

Suppose f(n) = o(n), for any subgraph-closed f-separable clas of graphs, there is a constant c such that every graph in the family has strict (r, cf(n))-division for any r.

Lemma 2:

Suppose f(n) = o(n), for some constant c, any graph from a subgraph-closed f-separable class has a (
[image: image4.wmf]_

r

, cf)-recursive division for any
[image: image5.wmf]_

r

.

3.3
Summary of Previous Approaches

Table 1 Improvements of Dijkstra 's Shortest Path Algorithm

	Author
	Running Time
	Strategies
	Ref

	Dijkstra
	O(V2)
	Priority queue, each search is O(V)
	2

	Dijkstra
	O(E logV)
	Binary-min-heap
	1

	Dijkstra: Johnson
	O(V logV)
	Priority queue containing the nodes, each queue operation takes O(lgV)
	1

	Fredman and Tarjan
	O(E+VlogV)
	Fibonacci Heap, EXTRACT-MIN is O(lgV)
	3

	Frederickson
	O (
[image: image6.wmf]V

V

log

)
	Use O(
[image: image7.wmf]V

) separators

Topology based heap
	4

	Henzinger, Klein, Rao, Subramanian
	O(V)
	Use O(logV) separators

Recursive-division tree
	1

4. New Approaches Towards Linear Time for SP

4.1
The Big Ideas

The basic ideas of this paper is to use the r-recursive division to divide the graph to much smaller regions and use Dijkstra's algorithm to compute each region, then using a linear time algorithm to obtain the solutions in O(n) time bound.

In order to reach a linear time bound for the solution, the problem can be divided as the following three categories:

· Find a separator or the f-separable class of graph in linear time.

· Find r division in linear time.

· Compute SP in linear time.

To reach linear time bound, the author used some special techniques to reduce the total calculation time such as

· The input graph is equipped with a multiple level (logn) recursive-division tree

· Change parameters to compute recursive divisions in linear time.

· To save computation time, in each region, only performs a number of steps of Dijkstra's algorithm (the number depends on the level of region), make smart choice, abandon this region until later. So, the computation skips around between regions.

· Each edge was associated with a status variable. The value is either active or inactive.

Advantages:

No need of O(
[image: image8.wmf]n

) separators, only O(n1-e) separators were needed.

Find r division in linear time.

Compute SP in linear time.

Can be applied to a much broad class of graphs than just planar graphs.

4.2
Simplified Algorithms With Only Two Division

4.2.1
Initialization:

· Label each node with a sequential integer

· Divide the graph into O(n/log4n) regions of size O(log4n) with boundaries of size O(log2n)3. The division level = 0, 1, 2 respectively.
· initialize all edges to be inactive
· d[v] = infinity
· d[s]=0 and activate all its outgoing edges
4.2.2
Repetition:

Step 1: Select the region containing the lowest-labeled node that has active outgoing edges in the region.

Step 2: Repeat logn times the following:

Step 2A:

· Select the lowest-labeled node v in the current region that has active outgoing edges in the region.

· Relax and deactive all its outgoing edges (v, w) in that region.

· For each of the other endpoints w of these edges, if relaxing the edge (v, w) resulted decreasing the label of w, ((w), then activate the outgoing edges of w.
4.2.3
Termination

The algorithm terminates when all the active edges become inactive.

4.2.4
Proof of correctness

The author used a directed graph with recursive division as example to analyze its priority queue (Q) operations:

· updateKey(Q, x, k): updates the key of x to k

· minItem(Q): return the item in Q with the minimum key value

· minKey(Q): returns the key associated with min Item(Q)

This priority queue operation was performed in each divided region G using the following procedure:

PROCESS (R)

A1
If R contains a single edge (u,v) then //atomic region

A2

if d(v) > d(u) + length(u,v) then

set d(v) := d(u) +length(u,v) and for each outgoing edge (v,w) of v

call GLOBAL-UPDATE(R(v,w), (vw), d(v))

A3

updateKey(Q(R), uv,
[image: image9.wmf]¥

)

A4
Else

//nonatomic region

A5

Repeat (l(R) times or until minKey(Q(R)) is infinity

A6

let R' := minItem(Q(R), x, k)

A7

Call PROCESS(R')

GLOBAL-UPDATE(R, x, k) //x is an item in Q(R), k is the key value of x

updateKey(Q(R), x, k)

if the updateKey operation reduced the value of minKey(Q(R)) then

GLOBAL-UPDATE(parent(R), R, k)

This paper proved the 3 shortest path conditions using above algorithms by proving the following 5 Lemmas.

Lemma 1: For each node v, thoughout the algorithm the label d(v) is an upper bound on the distance from s to v.

Lemma 2: If an edge (u, v) is inactive then it is relaxed except during step A2.

Lemma 3: The key of an active edge (v, w) is d(v) except during step A2.

Lemma 4: For any region R that is not an ancestor of the current region, the key associated with R in Q(parent(R)) is the min key of Q(R).

Lemma 5: For any region R that is not an ancestor of the current region,

minKey(Q(R)) = min{d(v): vw is a pending edge contained in R).

4.2.5
Analysis

The author used a special skill called "charging scheme" analysis method to analyze complexity of this algorithm.The simplified algorithm uses 3 level divisions to recursively divide the graph.

O(nloglogn)

	Region Level
	0
	1
	2

	# of nodes
	O(n)
	O(log4n)
	O(log2n)

	# (R, v) pair in region
	1
	O(n/log4n)
	O(O(n/log4n)*(log2n))

= O(n/log2n)

	total # of invocations (s)
	O(n)
	O(n/logn)*
	O(n/logn)

	chargeable invocations
	1 level-0
	1 level-1

lgn level-0

	1 level-2

1 level-1

logn level-0

	Queue Size
	O(n)
	O(log4n)*
	O(n/log4n)

	time for each invocation (t)

	level-0
	O(1)
	O(1)*
	O(1)

	
	level-1
	
	loglogn*
	

	
	level-2
	
	
	l

	
	Total
	O(1)
	O(nloglogn)
	O(logn)

	GLOBAL-UPDATE Q cost
	level-0
	O(1)
	charged to 1
	charged to 2

	
	level-1
	
	loglogn*
	

	
	level-2
	
	
	n/logn*

	
	Total
	O(n)
	O(nloglogn)
	O(n/logn)*logn =O(n)

	Total
	O(nloglogn)

4.4
Linear Time SP Computation With R-Recursive Division

The basic ideas to obtain linear time shortest path computation was exemplified in section 4.4. The only difference for linear time computation is the recursive divisions. The linear time algorithm uses O(lgn) level recursive divisions. The algorithm is the same as 2 level divisions, however, the analysis is much more complex. For more information, please refer to M. Henzinger and P. Klein's paper(1).

5. Linear Time Recursive Divisions

Frederickson (4) reported an algorithm to find an r-division of an n-node planar graph in O(nlogr + (
[image: image10.wmf]r

n

/

)logn) time. Based on his research, the author used the similar ideas to obtain a linear time recursive division.

Problem:

Given a f-separable family of graphs G, find an ((r0, r1, r2 ...), f)-recursive decomposition where f(x) is a function to be defined.

strategies:

· f(x) = O(x3/4log2x)

· O(logn) divisions

· use a procedure CONTRACT(G, z) which similar to Frederickson 's FindCluster to determine a decompostion of the graph G into at most n/z connected subgraphs, each containing at most 3z nodes. Then contract each subgraph to a single node.

· Use Frederickson 's DIVIDE(G, S, r) function to divide the graph into regions each having at most r nodes. S is a node subset.

Algorithm: 3 phases

PHASE 1: CONTRACT

Let n be the number of nodes in G

Let G0 = G

let z0 = 2

let i =0

while number of nodes in Gi exceed n/logn, do

let Gi+1 = CONTRACT(Gi, zi)

let zi+1 = 7 zi 1/5

let i = i+1

Let I = i -1

PHASE 2: obtain division for each of subgraphs in series, build recursive division tree

Create a vertex vG to be the root of the recursive-division tree

Let DI+1 be the trivial division of GI+1 consisting of a single region

For i = I down to 0 do

Let SR be the nodes in region R that also appear in other regions Di+1

Let DR = DIVIDE(R, SR, zi)

For each region R' of DR
Expand R' into a region R'' of Gi by replacing each vR' with EXPAND(v)

create a chile vR''of vR in the recursive-division tree

Let Di be the decomposition of Gi consisting of the regions R'' found above

PHASE 3: add leaves to the recursive division tree

for each region R of D0

for each edge (of R, create a child ve of vR.

The author analyzed the total running time of his algoirhtm is to be O(n). Due to the complexity of analysis, here we ignore the details.

6. Conclusions

In summary, this report introduced the basic ideas of the author used to obtain a linear shortest path computation algorithm. Extensive background knowledge on graph decomposition was summarized.

PAGE
12

_1065894828.unknown

_1065967595.unknown

_1065981691.unknown

_1066032377.unknown

_1065965442.unknown

_1065885742.unknown

_1065892934.unknown

_1065885502.unknown

