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The goal of the paper, LEDA: A Platform for Combinatorial and Geometric Computing, is neither to explain how to use LEDA nor to prove one theory, but to give an overview of LEDA, to explain why LEDA was developed, what LEDA is, the structure of the LEDA system, and what features LEDA has. 

LEDA, Library of Efficient Data Types and Algorithms, is a C++ library of combinatorial and geometric data types and algorithms. It is a versatile, easy to use, extendible, mature, platform independent and equally attractive class library to both non-experts and software specialists. 

At the beginning the paper, the author mentioned the reason of the development of LEDA, that is the lack of standard library of the data structures and algorithms of combinatorial and geometric computing, a core area of computer science, which results in severely limitation of the impact of the area on computer science as a whole and also slows down progress both within and outside of research. The lack is due to the heavy reliance, in this area, on the complex data types such as stacks, queues, dictionaries, sequences, sorted sequences, priority queues, graphs, points, segments, which requires a programming language where all these types are available. However, only with the advent of object-oriented programming did it become feasible to provide such an extension in a clean way. 

This, of course, must be the main reason. However, there are several other considerations, out of which this project grew, which the author didn’t mention but I think can’t be neglected. 

First, the sharp contrast of a significant fraction of the eminently practical research done in the algorithms area with only a small part of actual use of it make it necessary for the algorithms research include implementation if the field wants to have maximum impact.

Second, after surveying the amount of code reuse in the small and tightly connected research group, several implementations of the same balanced tree data structure were found. 

Third, many students had implemented algorithms for their master's thesis. Unfortunately, the work was usually lost after the students graduated. So, we need  depository for implementations. 

Fourth, the specifications of advanced data types in text books were incomplete and not sufficiently abstract to allow to combine implementations easily. As a consequence combining implementations is a non­trivial task. 

To overcome these shortcomings, the group started the LEDA project by creating a platform for combinatorial and geometric computing. LEDA is the long-term result of continuous and direct input from basic research departments thus providing a fast way of technology transfer in object-oriented data structure and algorithm design.

The LEDA project started in the fall of 1988. At the first phrase, The LEDA research group spent 6 months of the project on searching for the correct specifications and on selecting the implementation language. Eventually, the group came up with the item and select C++ as the implementation language.

Under the lead of Stefan Naher, the head of the LEDA project and the main designer and implementor of LEDA, the publication about LEDA first appeared in MFCS 1989 (Lecture Notes in Computer Science, Volume 379) and ICALP 1990 (Lecture Notes in Computer Science, Volume 443). Then in 1990 Stefan Näher implemented a first version of the combinatorial part (= data structures and graph algorithms) of LEDA (Version 1.0). Version 2.0 was made available on June 1992. Version 2.0 allowed to use arbitrary data types (not only pointer and simple types) as actual type parameters of parametrized data types. It included a first implementation of the two-dimensional geometry library (libP) and an interface to the X-Window system for graphical input and output (the data type window). Since February 1993, Version  3.0 was available. Version 3.0 switched to the template mechanism to realize parametrized data types (macro substitution was used before), introduced implementation parameters that allow to choose between different implementations, extended the LEDA memory management system to user-defined classes, and further improved the efficiency of many data types and algorithms. Version 3.1 came on January 1995. It corrects bugs, provides a more efficient graph data type and contains new data types (arbitrary precision number types and basic geometric objects) used for robust implementations of geometric algorithms. LEDA was first distributed in the summer of 1990. Its user community has grown to a respectable size by now. Industrial use started in 1994 and LEDA Software GmbH was founded in early 1995 and changed its name into Algorithmic Solutions Software GmbH in 1998. In January 2001 Algorithmic Solutions became solely responsible for the LEDA project.  

LEDA is a wide collection of data types and algorithms. The library is organized into six logical units: (1) basic data types, include strings, lists, queues, stacks, arrays, partitions and trees. (2) numbers, vectors, and matrices. The number types are the built-in types int, float, and double as well as the arbitrary precision versions Int and Float. Vectors and matrices are available for all four number types. (3) dictionaries and priority queues. This part include priority queues, dictionaries, dictionary- and hashing-arrays, sorted sequences, and persistent dictionaries. (4) graphs. This section offers different kinds of graphs: directed graphs, undirected graphs, and planar graphs. In addition, it offers data structures on graphs and many algorithms on graphs and networks. (5) windows and panels. This section offers an interface to the X11 windows system. (6) geometry. This part offers points, segments, lines, data structures on these objects and some geometric algorithms

Then in the second part of the paper, the author concluded the main features of LEDA as following::

· LEDA is implemented as an object-oriented C++ class library. Because of its flexibility, availability, and expressive power, the group selected C++ as the implementation language. Together with the fact that the high expressive power of LEDA keeps application programs short, this leads to short compile times.
· LEDA provides a sizable collection of data types and algorithms.

· LEDA gives a precise and readable specification for each of the data types and algorithms mentioned.

· LEDA contains a comfortable data type graph. The data type graph allows to write programs for graph problems in a form close to the typical text book presentation.  The goal is the equation “Algorithm + LEDA = Program”.

· For many efficient data structures access by position is important. In LEDA, an item concept is used to cast positions into an abstract form. 

· LEDA contains several alternative efficient implementations for each of the data types. The user may even provide his/her own implementation. 

· LEDA provides many geometric data types and algorithms in two and three dimensions. It can compute with arbitrary precision avoiding loss of floating number exactness due to rounding errors. 

· The algorithms are generic, in a way they can be parameterized by user or problem specific data. 

· All data types can be parametrized and all algorithms can be performed using numbers with arbitrary precision. Thus the correctness of the result is guaranteed. 

· Several algorithms prove their results by short and understandable test routines relying on mathematical theorems.

· For many problems all degenerated cases are taken into consideration. 

· LEDA provides windowing and visualization facilities encapsulated as data types allowing fast building graphics user interface prototypes to easily draw and interactively modify visualized models of LEDA graphs and its geometric data types. 

· LEDA supports applications in such broad range of areas as code optimization, VLSI design, robot motion planning, traffic scheduling, machine learning, and computational biology.

With these features, we can find that LEDA satisfies the most important requirements for software libraries:

· Ease of use: LEDA provides an intuitive class interface. Names of classes, functions and algorithms are standardized and well documented, time and space complexity is specified. 

· Efficiency: LEDA provides a wide range of efficient algorithms, many of them being proven to be asymptotically optimal. LEDA shows excellent results when compared to other libraries. 

· Reliability: The algorithms implemented in LEDA also get along with degenerated inputs and problem instances. By providing different number kernels problems arising from finite precision computations are prevented. 

· Extensibility: LEDA is not a monolithic class library. It is designed to be easily extensible by means of parametric polymorphism. The existence of many LEDA extension packages (LEPs) proves that feature. 

· Robustness: LEDA is well-tested during a reliable object-oriented development process as well as by the huge number of its users. 

· Modularity: LEDA provides several packages: the basic package, the graph package, the geometry package, and the window package. 

· Rapid prototyping: (Re-)using LEDA definitely means decreasing development time and increasing reusability. 

· Memory management: LEDA provides an own memory management increasing time efficiency (it can be switched off, if necessary). 

· Platform independency: LEDA runs on different operating systems like Windows, Unix, Linux, Macintosh, with most C++ compilers available. 

· Correctness checking: LEDA introduces the concept of algorithm/program checking. Rather than proving the correctness of the algorithm/program for any possible input, each time the algorithm/program is run with a specific input, the correctness of its output with respect to that input is checked. 

In the third section of the paper, the author introduces the reader to LEDA by showing four short, simple, but powerful programs. They exemplify different parts of LEDA, that are data structures, graphs, geometry and graphics. He discusses the design goals and the approach that the group took to reach them. He did not intend to make the reader to understand the algorithms and the implementation in full detail. His goal is to show: 

. how easily the algorithms are transferred into LEDA programs. 

. how natural and elegant the programs are. 

In other words, Algorithm + LEDA = Program. 

Word Count 

The task of word count is to read a sequence of strings from standard input, to count the number each string, and to print a list of all occurring strings together with their frequencies on standard output. 

The LEDA types used here are string and dictionary arrays (d arrays). The parametrized data type dictionary array (d array<I, E>) realizes arrays with index type I and element type E . We use it with index type string and element type int. 

	#include <LEDA/d_array.h>   //include statement for dictionary arrays.

main() 

{ d_array<string,int> N(0); 

  string s; 

  while (cin >> s) N[s]++; 

  forall_defined(s,N) cout << s << " " << N[s] << "\n"; 

} 


The program starts with the include statement for dictionary arrays. In the first line of the main program we define a dictionary array N with index type string and element type int and initialize all entries of the array to zero. Conceptually, this creates an infinite array with one entry for each conceivable string and sets all entries to zero( The implementation of d_arrays stores the nonzero entries in a balanced search tree with key type string.) In the second line we define a string s. In the third line, The whileloop does most of the work. The expression (cin >> s) returns true if the input stream is noempty and false other wise. In the former case, the first string is removed from the input stream and assigned to s. Then the entry N[s] of array N is increased by one. The iteration forall_defined(s, N) in the last line successively assigns all strings to s for which the corresponding entry of N was touched during execution. For each such string, the string and its frequency are printed on the standard output. 

 Shortest Paths 

The task of shortest paths is to compute the minimum travel time from a specified node to any other node of the graph. As we have known, this problem can be simply solved by Dijkstra’s algorithm. The key idea is to show that for all nodes v the label dist[v] is always the shortest travel time form s to v along a path where all but the last node belong to S. A proof of correctness of Dijkstra’s algorithm is beyond the scope of this article. 
As to this problem, the appropriate data structure is a priority queue because this will allow the selection of an unreached node with minimal distance value in logarithmic time. Besides graphs, it uses the data types node_array, edge_array and node priority queue (node_pq). Edge arrays and node arrays are arrays indexed by edges and nodes, respectively. We use an edge_array<int> cost to store the travel times across edges, a node_array<int> dist to store the minimum travel times to all nodes. We declare a priority queue PQ for the nodes of graph G. It stores pairs (v, dist[v]). The pairs {(v, dist(v)); v unreached} should be stored in a priority queue, e.g., a Fibonacci heap. The node priority queue PQ always contains the nodes of G in V\S together with their current integer dist values.
The presentation of the algorithm is as following:

	set dist(s) to 0. 

set dist(v) to infinity  for v different from s. 

declare all nodes unreached. 

while there is an unreached node 

{ let u be an unreached node with minimal dist-value. 

  declare u reached. 

  forall edges e = (u,v) out of u 

  set dist(v) = min( dist(v), dist(u) + cost(e) ) 

} 



The LEDA implementation of Dijkstra’s algorithm. 

	#include <LEDA/graph.h> 

#include <LEDA/node_pq.h> 

void DIJKSTRA(const graph &G, node s, const edge_array<double>& cost, node_array<int> &dist) 

{ node_pq< int > PQ(G); 

node v; 

edge e; 

forall_nodes(v,G)

{ if (v == s) dist[v] = 0; else dist[v] = MAX_INT; 

  PQ.insert(v,dist[v]); 

} 

while ( !PQ.empty() ) 

{ node u = PQ.del_min(); 

  forall_out_edges(e,u) 

{ v = target(e); 

  int c = dist[u] + cost[e]; 

if ( c < dist[v] ) 

{ PQ.decrease_inf(v,c); dist[v] = c; } 

} 

} 

} 


Comparing the algorithm and the implementation, we find the strong similarity of the LEDA program and the description of this algorithm. In fact, for most graph algorithms, the algorithm and the implementation are similar. In this sense, LEDA realizes the equation “Algorithm + LEDA = Program.” 

From this example, we also find that an implementer of Dijkstra’s algorithm does not need to know about the inner workings of graphs and node priority queues.

Convex Hulls

The task of this example is to discuss how to compute the convex hull. For simplicity, we restrict ourselves to the so-called upper hull by cutting the convex hull at the leftmost and right most points and the convex hull of L is split into the upper and lower hull of L; here a point p is left of a point q if either the x-coordinate of p is smaller than the x-coordinate of q or the two x-coordinates are equal and the y-coordinate of p is smaller.

	
[image: image1.wmf]


Here is how to compute the upper hull of a set L of points. First sort L according to the left-to-right ordering of points. Let p1, p2, …, pn be the sorted sequence of points. We construct the upper hull of the points p1, …, pi incrementally for all i, 1 <= i <= n. Initialization is simple: the upper hull of p1 is p1. Assume now that we have already constructed the upper hull of p1, …, pi and next want to add pi = pi+1. If pi = pi+1, then there is nothing to do. If pi ( pi+1, then we simply have to delete the last point of the current upper hull, as long as the current upper hull has at least two points and the last two points together with the new point do not form a right-turn. We then add pi+1 to the upper hull; this completes the update step.
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The following is the LEDA implementation of this algorithm.

	#include<LEDA/list.h>

#include<LEDA/plane.h>

list<point> u_hull(list<point> L)

{

 L.sort();        //into left-to-right order

 List<point> Uh;

 Point p = L.pop();

 Uh.append(p);

 While(!L.empty()){

    Point q = L.pop();    //pop deletes the first element from L}}

    If (p == q) continue;

    List_item it;   

    While((Uh.length() >= 2) ^ !right_turn(Uh[Uh.pred(it = Uh.last())],

          Uh[it],q)) Uh.Pop();   //Pop deletes the last element from Uh

    Uh.append(q);

    P = q;

}

return Uh;

}


Again there is a striking similarity between the algorithm description and the LEDA program and only a few additional words are required to explain the program: L.sort() sorts the list L according to the default-ordering defined on the elements of the list. For points this is the left-to-right ordering. L.pop() deletes the first element from a list and returns it, Uh.append(p) appeneds the point p to the list Uh, L.empty() returns true if L is empty, Uh.length() returns true if L is empty, Uh.length() returns the length of list Uh, and Uh.Pop deletes the last element of list Uh. In LEDA a list is viewed as a sequence of so-called items (typelitst_item), each of which contains an element of the list. Uh.last() returns the last item of the list Uh, and for an item it of Uh the content of the item is given by Uh[it] and the predecessor item is given by Uh.pred(it).

There is another interesting fact about the convex hull program. A point in LEDA may have arbitrary rational coordinates, and all geometric predicates are evaluated exactly, that is, with exact rational arithmetic. Also note that the program correctly handles multiple occurrences of the same point and collinear points, situations frequently referred to as degeneracies. All geometric algorithms in LEDA are supposed to handle all degeneracies, and in fact many of them already do.

Graphics

The LEDA type window is an interface to he X11 window system. 

	#include <LEDA/ window.h>

  list<point> u_hull(list(point));

  main( )

{

  window W;

  list<point> L;

  point p;

  while (W>>p) { L.append(p); W.draw_point(p);}

  list <point> Uh= u_hull(L);

  p = Uh.pop( );

  while (! Uh.empty()) {W.draw_segment(p, Uh.head()); p = Uh.pop();}

}


The program reads a sequence of points, displays them, computes their upper hull, and displays the upper hull as a polygonal line. Again only a few explanations are needed. The definition window W defines a graphics window and opens it for mouse input. Any click on the left mouse button inputs a point(W >> p); a click on the right mouse button lets the statement W >> p evaluate to false. The point is appended to list L and displayed in the window W. Then the upper hull is computed and drawn as a polygonal line.

The data type window provides an interface for graphical input and output of basic two-dimensional geometric objects. Application programs using this data type have to be linked with libW.a and (on UNIX systems) with the X11 base library libX11.a 

Run-Time and Compile-Time Efficiency

All data types and algorithms in LEDA are precompiled and stored in libraries. An application program has to include only the header files of all the data types used in the application. These are typically short, since they include only the declarations of all the member functions of the type and only very small sections of actual code ( for in-line functions and for type conversion). The application programs are typically short, since LEDA allows them to be formulated on a very high level. These factors together lead to short compilation times. Only the linker has to search through the large (about three MB) LEDA library.

All data types in LEDA are realized by the asymptotically most efficient implementation known. For many data types we have even included several implementations.

Abstract data types hide the implementation details of a data structure, but the abstraction, if improperly done, might bring about a loss of efficiency.

It is clear that some penalty has to be paid for the generality of LEDA. Lauther has carried out an extensive comparison between graph and network algorithms implemented in LEDA and hand-coded C-versions. He reports that the LEDA versions are slower by a factor of 2 to 10 (typically by a factor of four) and use 2 to 3.5 times the storage of his versions. We believe that this is quite acceptable given the convenience that LEDA offers. We should mention that we reimplemented some of the basic data structures (most notably graphs) as a reaction to Lauther’s report. This reduced the typical slowdown to a factor of about two.

Conclusions:

1.From a user's point of view, LEDA is a platform for combinatorial and geometric computing. It provides algorithmic intelligence for a wide range of applications. It eases a programmer's life by providing powerful and easy­to­use data types and algorithms which can be used as building blocks in larger programs. It has been used in such diverse areas as code optimization, VLSI design, robot motion planning, traffic scheduling, machine learning and computational biology.

2.LEDA is a C++ library of combinatorial and geometric data types and algorithms. But, LEDA is not the only library of data structures around. Others are NIHL and Booch components. The main feature that distinguishes LEDA from the other libraries is its scope. No other library covers so much of combinatorial and geometric computing. 

3.In each case only a few lines of code were necessary to achieve complex functionality and, more over, the code is elegant and readable. We conclude that LEDA is ideally suited for rapid prototyping as summarized in the equation 

Algorithm + LEDA = Program. 

The data structures and algorithms in LEDA are efficient. For example, the computation of shortest paths in a graph with 10000 nodes and 100000 edges and the computation of the crust of 3000 points took less than a second each. Thus 

Algorithm + LEDA = Efficient Program. 

If you want to get familiar with LEDA, you can visit the following website: http://www.mpi-sb.mpg.de/LEDA/leda.html, where you can find  the The LEDA User Manual, which explain how to use it, and The LEDA Guide, which provide you additional information and examples on the data types included in the LEDA library and help you to choose the best data type for your needs. A commercial version of LEDA is available from Algorithmic Solutions Software GmbH. 

http://www.algorithmic-solutions.de
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