Report On

‘Improved Algorithms for Dynamic Shortest Paths’

By: H.N. Djidjev, G.E. Pantziou, and C.D. Zaroliagis

Reported by: Ling Tian (#312643)

Introduction:

There has been a growing interest in dynamic graph problems in recent years. The goal is to design efficient data structures that not only enable fast answering to a series of queries, but that can also be easily updated after a modification of the input data. The authors of this paper did a good job in providing functioning data structures and algorithms and achieved an overall complexity of O(log n). This result superseded previously known algorithms by S.Even, H.Gazit, and H.Rohnert (their papers were published 15 years ago) under the same condition that edge deletion and edge cost updates are considered.

The Target – What is the Problem:

There are two main versions of the shortest path problem in general: All-pairs shortest path problem, in which we look for shortest paths between every pair of vertices in G; and Single-source shortest path problem (example: Dijkstra’s algorithm).

This paper is investigating the following dynamic (all-pair) shortest path problem:

Given G, build a data structure that will enable fast answering of on-line shortest path or distance queries, where a shortest path query specifies two vertices and asks for the shortest path between them.

In case of edge deletion or edge cost modification of G, update the data structure efficiently, i.e., without recomputing everything from scratch.

The Blue Print -- Key Idea:

Employ a decomposition strategy based on graph separators that divides the outerplanar digraph into subgraphs sharing a constant number of vertices with the rest of the graph. Our data structure maintains only local—to a particular subgraph—information regarding shortest paths between separator vertices. This information is encoded into specially constructed, constant size, sparse abstractions of these subgraphs. To answer a query, distance between relevant separator vertices are computed and passed into the relevant local subgraph.

Based on the above result for outerplanar digraphs and using the hammock decomposition approach pioneered by Frederickson [1], it gives two algorithms for planar digraphs that are parameterized in terms of a topological measure q of the input digraph. Informally, q represents the minimum number of outerplanar subgraphs (called hammocks), satisfying certain separation properties, into which a planar graph can be decomposed.
The Construction – Main Algorithms:

1. Pre-Processing Algorithm

ALGORITHM Pre_Outerplanar (Gop)

BEGIN

1. Run algorithm Sep_Tree (Gop, ST(Gop)) to construct a separator tree ST(Gop) in Gop.

2. Run procedure Sparse Representative (Gop) (given below) to compute sparse representatives for Gop and its descendant subgraphs in ST (Gop).

3. Construct tables A and B such that, for each v (V (Gop), A [v] stores a pointer to a leaf subgraph of ST (Gop) containing v and, for each e (E (Gop), B [e] stores pointers to the two leaf subgraphs containing e.

4. Preprocess ST (Gop) such that lowest common ancestor queries can be answered in O (1) time.

END

PROCEDURE Sparse Representative (G)

BEGIN

1. For each child H of G in ST(Gop) do

if H is a leaf of ST(Gop) then SR(H) = H

else run Sparse Representative(H).

2. Construct SR(G) according to Definition for SR(G) using the sparse representatives of the children of G.

2. Query Algorithm
Essentially, it finds the distance between any two vertices v and z of Gop as follows. First search ST(Gop) to find a descendant subgraph G of Gop such that the separation pair p = (p1, p2) associated with G separates v from z. Then for the distance d(v,z) between v and z(in Gop), we have

 d(v,z) = min{d(v,p1) + d(p1,z), d(v,p2) +d(p2,z)}

Hence the problem becomes computing the distances d(v,p1), d(p1,z), d(v,p2) and d((p2,z).

ALGORITHM Dist_Query_Outerplanar(Gop,v,z)

BEGIN

1. Using table A, find pairs of vertices pv and pz as defined

2. Find a descendant subgraph G of Gop such that the separation pair p associated with G separates pv and pz in G. Note that G is the lowest common ancestor of the two leaf subgraphs containing pv and pz respectively.

3. Run algorithm Attached_Pair(G).

4. Run Find_D(G, D(pv, p)).

5. Run Find_D(G, D(p, pz)).

6. Determin D(pv, pz) by computing each distance using (1) and the distances computed in D(pv, pz) and D(p, pz).

END.

PROCEDURE Find_D(G,D(s,r))

BEGIN

1. Traverse ST(Gop) top-down from G to the leaf subgraph containing s to find a descendant subgraph G’of G such that the separation pair r’ associated with G’separates s and r in G’.

2. If G’ is a leaf of ST(Gop), then determine D(s, r) directly in constant time.
3. If G’ is not a leaf, then run Find_D(G’, D(s, r’) . Compute each distance in D(s,r) using (1) and the distances in D(s, r’) and D(r’, r). The latter set is available from SR(G’).
END.

3. Update Algorithm

Highlights of the algorithm: The edge will belong to at most O(logn) subgraphs of Gop as they are determined by the Sep_Tree algorithm. Therefore it suffices to update (in a bottom-up fashion) the sparse representatives of those subgraphs that are on the path from the subgraph G containing e (where G is a leaf of ST (Gop)) to the root of ST(Gop).

ALGORITHM Update_Outerplanar(Gop, e, w(e))

BEGIN

1. Find a leaf G of ST(Gop) for which e (E(G).

2. Update the cost of e in G with the new cost w(e).

3. If e belongs also to Ĝ, then update the cost of e in Ĝ.

4. While G < > Gop do

(a) Update SR(parent(G)) using the new versions of SR(G) and SR(Ĝ).

(b) G := parent(G)

END.

The Ultimate Medal -- Theorem and Supporting Lemmas:
Theorem: Given an n-vertex outerplanar digraph Gop with real-valued edge costs but no negative cycles, there exists an algorithm for the dynamic shortest path problem in Gop with the following performance characteristics: (I) preprocessing time O(n); (ii) distance query time O(log n); (iii) shortest path query time O(L + log n) (where L is the number of edges of the reported path); (iv) update time, after an edge cost modification or edge deletion, O(log n).

The theorem can be proved valid immediately from the following lemmas.

Lemma 1
Algorithm Pre_Outplanar(Gop) runs in O(n) time.

Proof:

Refer to Algorithm Pre_Outerplanar (Gop).

Step 1 needs O(n) time and space by Lemma 2.1. Let P(n) be the maximum time required by Step 2. Then P(n) satisfies the recurrence

P(n) <= max {P(n1) + P(n2) | n1 + n2 = n + 2, n1, n2 <= 2n/3} + O(1), n>1,

Whose solution is P(n) = O(n). Step 3 can be easily implemented in O(n) time by performing a traversal of all leaf subgraphs of ST(Gop) and assigning to A[v] the pointer to the first subgraph containing vertex v in this traversal. Similarly, during the same traversal, we can assign to B[e] pointers pointing to the at most two leaf subgraphs containing edge e. Step 4 also needs O(n) time which is already proven by [1].

Lemma 2
Algorithm Dist_Query_Outerplanar(Gop, v, z) finds the distance between any two vertices v and z of an n-vertex outerplanar digraph Gop in O(log n) time.

Proof:

Refer to Algorithm Dist_Query_Outerplanar(Gop, v, z).

To establish the correctness of the algorithm it suffices, in view of Lemma 3.2 [2] and our preceding discussion, to establish the correctness of the procedure Find_D. The latter follows easily by an induction argument and the fact that, due to Step 3, the distances between vertices of the separation pairs attached to G are the correct ones (i.e., the distances in Gop).

Concerning the time complexity, it is clear that Steps1 and 2 take O(1) time (by the preprocessing algorithm). Step 3 takes O(logn) time by proven Lemma 3.2. Step 6 takes O(1) time as explained above. The time complexity of Steps 4 and 5 is that of procedure Find_D, which can be evaluated as follows:

Let Q(l) be the maximum time necessary to compute D(s,r), where l is the level of G in ST(Gop). Let also l max be the depth of ST(Gop) and let l < l’ <= l max be the level of G’. Then from the description of the algorithm,

Q(l) <= Q(l’) + Q(l’ – l) for l < l’ <= l max.

Which gives Q(l) = O(log n). Thus, the total time needed by the algorithm is O(log n).

Lemma 3
The shortest path between any two vertices v and z of an n-vertex outerplanar digraph Gop can be found in O(L+log n) time, where L is the number of edges of the path.

Proof:

Since every SR(G) is of constant size, it is trivial to extend procedure Find_D to compute, except for distances in Each SR(G), the corresponding shortest paths. As a consequence, every shortest path returned by Dist_Query_Outerplanar consists of edges e belonging to sparse representatives of descendant subgraphs of Gop. Now every such edge e can be regarded as a root of a tree defined by the trail() values, by considering the elements of trail(e) as the children of e. The leaves of this tree, which we call the trail tree of e, are the edges of Gop. Clearly, the trail tree has no more than L leaves, where L is the number of the edges of the requested shortest path. Then the time to answer a shortest path query is the time taken by Dist_Query_Outerplanar, which is O(log n) plus the time required to output the path. The latter is proportional to the time required to traverse the trail tree, which is linear in L, since each nonleaf node of the trail tree has at least two children.

Lemma 4
Algorithm Update_Outerplanar updates, after an edge cost modification or edge deletion, the data structures created by the preprocessing algorithm in O(log n) time.

Proof:

Refer to algorithm Update_Outerplanar(Gop, e, w(e)).
Using table B (computed from preprocessing), we can implement Step 1 in O(1) time. Steps 2 and 3 also require O(1) time. Each iteration of Step 4 takes O(1) time, since it involves the computation of a sparse representative from the (updated) sparse representatives of its children. By Lemma 2.1 [2], the number of iterations in Step4 is O(log n). Hence, Step 4 requires a total of O(log n) time.

The Impact – Contribution of the paper
This paper and its related research studies provides us a set of more efficient algorithms for solving the dynamic shortest path problem in outerplanar and planar digraphs. It also builds a data structure that will enable fast answering of on-line shortest path or distance queries.
<The End>

References:

[1] B.Schieber and U.Vishkin, On Finding Lowest Common Ancestors: Simplification and Parallelization, SIAM Journal on Computing, 17(6) (1988), 1253-1262.

[2] H.N. Djidjev, G.E. Pantziou, and C.D. Zaroliagis, Improved Algorithms for Dynamic Shortest Paths, Algorithmica (2000) 28: 367-389

