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Abstract: The vertices of any n-vertex
planar graph can be partitioned into
three sets A, B, C such that no edge
joins a vertex in A with a vertex in B,
neither A nor B contains more than
2n/3 vertices, and C contains no more
than 2 2 n vertices. We exhibit an
algorithm which finds such a partition
A, B, C in O(n) time by an algorithm.

Introduction
For many kinds of combinatorial
problems, we can use divide-and-
conquer” approach to divide them into
some simple subproblems, and then
combine the subproblem solutions to
give the solution to the original problem.
In order to use this approach successfully
and efficiently, three things are necessary.
First, the subproblems must be of the
same type as the original and
independent of each other. Second, the
cost of solving the original problem
given the solutions to the subproblems
must be small. Finally, the subproblems
must be significantly smaller than the
original. any n-vertex graph can be
partitioned into three sets A,B,C such
that no edge joins a vertex in A with a
vertex in B, neither A nor B contains
more than αn vertices, and C contains
no more than βf(n) vertices(α<1, β>0). If
we can use this approach to consider
those problems which are defined on
graphs, For example, the sets A and B
define the subproblems, we can use
divide-and-conquer approach to solve a
lot of those problems efficiently.
  Before we talk about this separator
theorem, there are some known separator
theorems. For example, if we remove a
single edge of any n-vertex binary tree, it
can be separated into two subtrees, each

with no more than 2n/3 vertices. The
same situation is fitting for any n-vertex
tree. A n -separator theorem holds for
the class of grid graphs, and it also holds
for an one-tape Turing machine graph.
   Although not all sparse graphs has an
f(n)-separator theorem for some
f(n)=o(n), planarity has. Before we prove
it, we need to use three facts about
planarity.

Separator theorems
 In order to prove the theorems, we need
to use three facts about planarity.
THEOREM 1(Jordan curve theorem).
let C be any closed curve in the plane,
removal of C divides the plane into
exactly two connected regions,
the  ”inside” and  the “outside” of C.
THEOREM 2. Any n-vertex planar
graph with n≥3 contains no more than
3n-6 edges.
THEOREM 3(Kuratowski’s theorem).
A graph is planar if and only if it contains
neither a complete graph on five vertices
nor a complete bipartite graph on two
sets of three vertices as a generalized
subgraph.

  From theorem3, we can get the
following lemma and its corollary.
LEMMA 1. Let G be any planar graph,
shrinking any edge of G to a single vertex
preserves planarity.



COROLLARY 1. Let G be any planar
graph. shrinking any connected
subgraph of G to a single vertex
preserves planarity.
If we can consider more general situation,
such as consider planar graphs which has
nonnegative costs on the vertices, it will
be more useful in some application. So
we should prove the following lemma.
LEMMA 2. Let G be any planar graph
with nonnegative vertex costs summing
to no more than one. Suppose G has a
spanning tree of radius r. Then the
vertices of G can be partitioned into
three set A, B, C, such that no edge joins
a vertex in A with a vertex in B, neither A
nor B has total cost exceeding 2/3, and C
contains no more than 2r+1 vertices, one
is the root of the tree.
For example:
  The cycle(bold line) divided the
graph into two parts(inside and
outside)
So  A—inside of cycle
    B—outside of cycle
    C--cycle

LEMMA 3. Let G be any n-vertex
connected planar graph having
nonnegative vertex costs summing to no
more than one. Suppose that the vertices

of G are partitioned into levels according
to their distance from some vertex v, and
that L(l) denotes the number of vertices
on level l. If r is the maximum distance of
any vertex from v, let r+1 be an
additional level containing no vertices.
Given any two levels l1 and l2 such that
levels 0 through l1-1 have total cost not
exceeding 2/3 and levels l2+1 through
r+1 have total cost not exceeding 2/3, it
is possible to find a partition A,B,C of the
vertices of G such that no edge joins a
vertex in A with a vertex in B, neither A
nor B has total cost exceeding 2/3, and C
contains no more than L(l1)+L(l2)
+max{0,2(l2- l1-1)} vertices
Proof:
1>if l1 ≥ l2

A— L(0~ l1-1)
B— L(l1+1~r)
C— L(l1)

0         l0        l2  l2+1/(l1-1)   l1        l1+1   r

2>if l1 < l2

0        l1-1      l1     l1+1     l2-1      l2      l2+1

Delete the vertices on l1 , l2

the graph will be divided into three parts,
the only part which can have cost>2/3 is



the middle part(l1+1~ l2-1)
a>if the middle part ≤ 2/3
A--the most costly part of the three
B--the remaining two parts
C--L(l1 )+ L(l2 )

b> if the middle part >2/3
0           l1        l1+1                        l2-1   l2   

delete all vertices on levels l2 and
above,shrink all vertices on levels l1 and
below to a single cost zero
  0             l1+1                              l2-1

 
apply lemma 2 to this new graph. A’, B’,
C’ are the resulting vertex partition
A—MAX{A’, B’}
B---L(l1)+ L(l2 )+(2(l2-l1-1)+1)-1
C—the remaining vertices in G

THEOREM 4.Let G be any n-vertex
planar graph having nonnegative vertex
costs summing to no more than one. Then
the vertices of G can be partitioned into
three sets A,B,C such that no edge joins a
vertex in A with a vertex in B, neither A
nor B has total cost exceeding 2/3, and C
contains no more than 2 2 n vertices
Let us prove it.
If(connected(G))
{

Partition the vertices into levels
according to their distance from some
vertex v.
Let L(l)---- be the number of vertices on
level l.
r--------maximum distance of any vertex
from v.
levels –1 and r+1 contains no vertices.
l1-------level(the sum costs<1/2 from

level 0 through  l1–1 and the sum
cost ≥1/2 from level 0 through
l1 )

k-------the number of vertices on level 0
through l1.

Find a level l0  ,such that l0   ≤l1    and
|L(l0 )| +2(l1 – l0 ) ≤2 k .



Find a level l2, such that l1  +1≤l2 and
|L(l2 )| +2(l2 – l1 –1)≤2 kn − .
If(exist(l0 ) and exist(l2 ))
{

By Lemma 3, the vertices of G can be
partitioned into three sets A,B,C such
that no edge joins a vertex in A with a
vertex in B, neither A nor B has cost
exceeding 2/3, and C contains no more
than 2( k + kn − ) ≤

2 2 n vertices.
}
If(!exist(l0 ))
{

for i≤l1 ,L(i)≥2 k –2(l1 – i)       since
L(0)=1  ==>1≥2 k  –2l1 , and l1 +1/2
≥ k ==> l1 ≥ k
k= L(0)+..+ L(l1)≥ k（ k +1）>k..

}
this is a contradiction.
If(!exist(l2))
{

  similar contradiction.
}
} //end of if(connected(G))
for example: the FIG. 3 can be divided
into three sets A,B,C. see FIG.4.

FIG.3

FIG.4
if(!connected(G))
{
  Let G1, G2,…, Gk be the connected

components of G, with vertex V1,
V2,…, Vk, respectively.
If(no connected component has total

vertex cost exceeding 1/3)
{

let i--------  the minimum index
such that the total cost of V1 ∪V2 ∪

V3 ∪…∪Vi exceeds 1/3
let A---- V1 ∪V2 ∪…∪Vi

let B---- Vi+1 ∪Vi+2 ∪…∪Vk

let C-----NIL
since i is minimum and the cost of Vi

≤1/3
So the cost of A ≤2/3
So the theorem is true.

}
for example: the FIG.5 can be divided
into three sets A,B,C. see FIG.6.

G1     G2    G3        G4            G5

FIG.5



FIG.6
If(some connected component(Gi )has
total vertex cost between 1/3 and 2/3)
{

let A-------Vi

let B------ V1 ∪V2 ∪V3 ∪…∪Vi-1 ∪
Vi+1 ∪Vi+2 ∪Vi+3 ∪…∪Vk

let C-----NIL
so the theorem is true

}
for example: the FIG.7 can be divided
into three sets A,B,C. see FIG.8

 G1      G2    G3           G4           Gi

FIG.7

FIG.8
If(some connected component(Gi) has
total vertex cost exceeding 2/3)
{
let A’, B’ , C’ be the resulting partition

let A------the set among A’ and B’ with
greater cost

let B------the remaining vertices of G
let C-------C’

Then A and B have cost not exceeding
2/3
So the theorem is true

}
for example: the FIG.9 can be divided
into three sets A,B,C. see FIG.10

G1    G2          Gi

A={B’}=1/3
B={ G1, G2, A’}=1/2
C={C’}=1/6
} // //end of if(! connected(G))
So it proves the theorem for all planar
graphs. In all cases the separator C is
either empty or contained in only one
connected component of G.

COROLLARY 2( n -separator
theorem): Let G be any n-vertex planar
graph. The vertices of G can be
partitioned into three sets A, B, C such
that no edge joins a vertex in A with a
vertex in B, neither A nor B contains
more than 2n/3 vertices, and C contains
no more than 2 2 n  vertices.

If the constant factor is 1/2 instead of 2/3,
the constant factor of 2 2 is allowed to
increase.
COROLLARY 3: Let G be any n -vertex
planar graph having non -negative
vertex costs summing to no more than
one. Then the vertices of G can be
partitioned into three sets A, B, C such
that no edge joins a vertex in A with a
vertex in B ,neither A nor B has total cost
exceeding 1/2, and C contains no more
than 2 2 n /(1- 3/2 ) vertices.

If graphs are almost planar, they also
have a n -separator theorem, so if we
extend theorem 4, we can get the
following theorem for those almost -
planar graphs.
THEOREM 5: Let G be an n-vertex
finite element graph with nonnegative
vertex costs summing to no more than



one. Suppose mo element of G has more
than k boundary vertices. Then the
vertices of G can be partitioned into
three sets A,B,C such that no edge joins a
vertex in A with a vertex in B, neither A
nor B has total cost exceeding 2/3, and C
contains no more than
4 2/k n vertices.

The following theorem shows that
theorem 4 and its corollaries are tight to
within a constant factor. That is, if
f(n)=o(n), no f(n)-separator theorem
holds for planar graph.
THEOREM 6: For any k, let G=(V,E) be
a k×k square grid graph(a k×k square
section of the infinite grid graph). Let A
be any subset of V such that ɑn≤│A│
≤n/2,where n=k2 and αis a positive
constant less than 1/2. The number of
vertices in V-A adjacent to some vertex in
A is at least k. ．min{1/2, α }

An algorithm for finding a good
partition
Step 1. Find a planar embedding of
G and construct a representation
for it（Figure 11）--Time: O(n)
We will use a list structure whose
elements correspond to the edges
of the graph. Stored with each edge
are its endpoints and four pointers,
designating the edges immediately
clockwise and counter-clockwise
around each of the endpoints of the
edge.Stored with each vertex is
some incident edge.

Step 2. Find the connected components
of G and determine the cost of each one.
If(none has cost exceeding 2/3)
{

construct the partition as described
in the proof of Theorem 4.

 }else
{

go to step 3.
  }
      Time:O(n)

Step 3.Find a Breadth-first spanning tree
of the most costly component. Compute
the level of each vertex and the number
of vertices L(l) in each level l.

Time: O(n)

Step 4.Find the level l1 such that the total
cost of levels through l1-1 does not
exceed 1/2,but the total cost of levels 0
through l1 does exceed 1/2. Let k be the
number of vertices in levels 0 through l1.

Time: O(n)

Step 5.Find the highest level l0< l1 such
that L(l0)+2(l1- l0) ≤ 2 k . Find the
lowest level l2≥l1+1 such that L(l2)+2(l2-
l1-1)≤2 kn − .
      Time: O(n)

Step 6:Delete all vertices on level l2 and
above. Construct a new vertex x to



represent all vertices on levels 0 through
l0. Construct a Boolean table with one
entry per vertex. Initialize to true the
entry for each vertex on levels 0 through
l0 .Initialize to false the entry for each
vertex on levels l0+1 through l2-1. The
vertices on levels 0 through l0 correspond
to a subtree of the breadth-first spanning
tree generated in Step 3. Scan the edges
incident to this tree clockwise around the
tree. When scanning an edge(v,w) with v
in the tree, check the table entry for w.
If(true)
{

delete edge(v,w).
}else
{

change it to true,
construct an edge(x,w),
delete edge(v,w).

}
the result of this step is a planar
representation of the shrunken graph.
      Time: O(n)

FIG. 12. Shrinking a subtree of a planar graph
(a) Original graph.
(b) Edges scanned around subtree.Those

forming loops and multiple edges in
shrunken graph are crossed out.

(c) Shrunken graph. Vertex 0 replace
subtree.

Step7. Construct a breadth-first spanning
tree rooted at x in the new graph.Record,
for each vertex v, the parent of v in the
tree, and the total cost of all descendants
of v including v itself. Make all faces of
the new graph into triangles by scanning
the boundary of each face and

adding(nontree) edges as necessary.
      Time: O(n)

Step 8. Choose any nontree edge(v1,w1).
Locate the corresponding cycle by
following parent pointers from v1 to
w1.Compute the cost on each side of this
cycle by scanning the tree edges incident
on either side of the cycle and summing
their associated costs.
If((v,w) is a tree edge with v on the cycle
and w not on the cycle)
{

if(v is the parent of w)
{

the cost associated with (v, w)
is the descendant cost of w.

}
if(w is the parent of v)
{

the cost of all vertices minus
the descendant cost of v.

}
}
if(which side of the cycle has greater
cost)
{

call it the “inside”.
}
        Time:O(n)

Step9.Let(vi,wi) be the nontree edge
whose cycle is the current candidate to
complete the separator. If the cost inside
the cycle exceeds 2/3,need to find a
better cycle by the following method.
  Locate the triangle (vi, y, wi) which
has(vi,wi) as a boundary edge and lies
inside the (vi,wi) cycle. If either (vi, y) or
(y, wi) is a tree edge, let (vi+1,wi+1) be the



nontree edge among (vi,y) and (y,
wi).Compute the cost inside the (vi+1,wi+1)
cycle from the cost inside the (vi,wi)
cycle and the cost of vi, y and wi.

    If neither (vi, y) nor (y,wi) is a tree edge,
determine the tree path from y to the
(vi,wi) cycle by following parent pointers
from y. Let z be the vertex on the (vi,wi)
cycle reached during this seach. Compute
the total cost of all vertices except z on
this tree path. Scan the tree edges inside
the (y,wi) cycle, alternately scanning an
edge in one cycle and an edge in the other
cycle. Stop scanning when all edges
inside one of the cycles have been
scanned. Compute the cost inside this
cycle by summing the associated cost of
all scanned edges. Use the cost, the cost
inside the (vi, wi) cycle, and the cost on
the tree path from y to z compute the cost
inside the other cycle. Let (vi+1,wi+!) be
the edge among (vi, y) and (y,wi) whose
cycle has more cost inside it.
   Repeat this step until finding a cycle
whose inside has cost not exceeding 2/3.

Time:O(n)

Step10.Use the cycle found in step 9 and
the levels found in step 4 to construct a
satisfactory vertex partition as described
in the proof of Lemma 3. Extend this
partition from the connected component
chosen in Step 2 to the entire graph as
described in the proof of Theorem 4.

Time : O(n)

APPLICATIONS
� Generalized nested dissection
� Pebbling
� The post office problem
� Data structure embedding problem
� Lower bounds on Boolean circuits

CONCLUSION
   This paper told us that the vertices of
any n-vertex planar graph can be
partitioned into three sets A, B, C such
that no edge joins a vertex in A with a
vertex in B, neither A nor B contains
more than 2n/3 vertices, and C contains

no more than 2 2 n  vertices.
Meanwhile, it exhibited an algorithm
which found such a partition A, B, C in
O(n) time.
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