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Introduction: 
 

Problem Statement: 
 
First let’s state the problem of MAX SAT as follows, 
 
An instance of the MAX SAT ( Maximum Satisfiability ) Problem is 
defined by, 
 

• A collection ‘C’ of Boolean clauses (C1,C2,…, Cm) 
• Each clause is a disjunction of literals  
• A literal is drawn from a set of variables {x1, x2, …, xn} 

• A literal may be a variable x or it’s negation x
__

 
• Also, each clause Cj ∈ C has an associated nonnegative weight 

wj. 
 
An Optimal Solution is achieved by maximizing the sum of the 
weight of the satisfied clauses (clauses with 1 or more literals), by 
the assignment of truth values to variables x1, x2, …, xn.. 

 

Note: If each clause contains at most two literals then the problem is 
said to be MAX2SAT and so on for others. 



Previous Results: 
 
Let’s see some of the previous results in MAX SAT problems: 
 
1) Johnson’s  algorithm demonstrated by Johnson obtained a  ½ - 
Approximation Algorithm, which is also an 
(1 – 1/2k) – Approximation Algorithm, if each clause contains at least 
k literals. 
 
 

2) Lieberherr and Specker  gave a √5
__

 - 1   Approximation  
                                                     2 
algorithm (0.618), which is achieved when the clause set does not 

contain both clauses xi & xi
___

 for any i. 
 
 
3) Kohli and Krishnamurthy gave a randomized algorithm whose 
solution has expected weight of at least 2/3 of the optimal solution.  
 
 
4) Yannakakis recently developed a ¾  - Approximation Algorithm, 
but the instance does not contain any unit clauses (clauses with only 
1 literal). This is achieved by transforming the MAX SAT instance into 
an equivalent instance. Maximum flow computations are used to 
transform MAX 2SAT instances.   
 



Johnson’s Algorithm and the Probabilistic 
Method:     
 
Johnson’s algorithm demonstrated by Johnson obtained a          
½  - Approximation Algorithm, which is also an (1 – 1/2k) – 
Approximation Algorithm, if each clause contains at least k literals.  
 
This is explained as follows, 
 
If we independently and randomly set each variable xi to be true with 
probability pi, then 
 

W
^

 = 
∑

∈CCj  wj (1 -  
∏

∈ Iji (1 – pi)  
∏
∈Iji pi) 

where, 

W
^

 = expected weight of clauses satisfied by the probabilistic 
assignment. 
I+

j (and I-
j) = set of variables appearing unnegated (and negated) 

in Cj. 
 
In the method of conditional probabilities, the value of the ith variable 
is determined in the ith  iteration. Given the values of x1, …, xi-1 , 
calculate the expected weight of clauses satisfied by the probabilistic 
assignment, given the current assignment to x1, …, xi-1 and the 
assignment xi = 1. Then, calculate the expected weight given the 
assignment to      x1, …, xi-1 and xi = 0. Finally assign the value that 
maximizes the conditional expectation. Each of these can be  
calculated in polynomial time and hence the algorithm takes 

polynomial time and the assignment produced has weight at least W
^

. 
 
Johnson’s algorithm sets pi=1/2 for all i and uses the method of 
conditional probabilities.  
 



 
For this choice of pi, we have, 

W
^

 ≥ 
∑

∈CCj (1 – ½) wj  = ½
∑

∈CCj wj  

Since the optimum assignment can have weight at most 
∑

j wj, 

this proves that Johnson’s algorithm is a ½-approximation algorithm. 
 
Also, if all clauses have at least k literals, then, 

W
^

 ≥ (1 – ½k) 
∑

∈CCj wj 

this proves that Johnson’s algorithm is a (1 – ½k)-approximation 
algorithm for this case of clauses having k literals. 
 
Let’s prove the Johnson’s algorithm by an example: 
 
Let x, y, z, w be the set of variables. 
Consider the collection of clauses (made up of literals), 
  

 (X v Y v Z) ∧ ( X
___

 v Y
___

 v W) ∧ (W
____

 v Y v Z) 
where, 

    X
___

, Y
___

 and W
____

 are negated variables. 
 
Now let’s assign a weight ‘2’ to each clause. Substitute the values in 
the equation, 

W
^

 = ∑
∈CCj  wj (1 -  ∏∈ Iji (1 – pi)  ∏∈Iji pi) 

 
2(1-( ½  ½ ½ )(0))  +   2(1-( ½ )( ½ ½ ))  +  2(1-( ½ ½ )( ½ )) 
 



=> 2(1) + 2(1-1/8) + 2(1-1/8) 
=> 2 + 14/8 + 14/8 
 

=> 5.5 = W
^

 
 

W
^

  ≥  ½ ∑
∈CCj

 wj 

 
=> 5.5  ≥  ½ (2+2+2) 
 
=> 5.5  ≥  3 
 
This proves the result when the number of literals is 3. 
 
Now, when the number of literals is 1: 
 
Let X, Y be the set of variables. 
 

(X) ∧ (X
___

) ∧ (Y)  => Weight of each clause = 1 
 
=> 1( 1 – ½ (0) )  +  1( 1 – 0 ( ½ ) )  +  1( 1 – ½ (0) ) 
 

=> 1 + 1 + 1  =  3  =  W
^

 
 

W
^

  ≥  ½ ∑
∈CCj

 wj 

 
=>  3  ≥  ½ (1+1+1) 
 
=>  3  ≥  3/2   
 
This proves the result when the number of literals is 3. 
 
Note that in the one literal case, the sum of the weights of the 
clauses will be exactly half of the expected weight of the clauses. 
Also, this case is the worst case for the Johnson’s Algorithm. 



A  ( 1 – 1/e ) – Approximation Algorithm: 
 
Next is the (1 – 1/e) approximation algorithm, 
Consider the following integer program: 

Max  
∑

∈CCj wjzj 

subject to: 

(IP)      
∑

∈CCj yi  +  
∑

∈CCj (1 – yi) ≥ zj 

 
    yi∈{0,1}      1 ≤ i ≤ n 

0 ≤ zj ≤ 1      ∀ Cj ∈ C  
 
By associating,  yi=1 with xi set true,   yi=0 with xi set false, 
Zj=1 with clause Cj satisfied,   Zj=0 with clause Cj not satisfied, we 
can see that the IP exactly corresponds to the MAX SAT problem and 
the optimal value Z*

IP is equal to the optimal value of the MAX SAT 
problem.  
 
Now make linear programming relaxation of IP i.e., replace yi∈{0,1} 
constraints with the constraints 0 ≤≤ yi ≤≤ 1. Call this linear program. 
 
Obviously the optimal value of LP is an upper bound on the optimal 
value of IP; that is, Z*

LP ≥≥ Z*
IP. 

 
Here we note that, 
 

• When no unit clauses, the solution yi=1/2 for all i and Zj=1 for 

all j, which is of value ∑
∈CCj

wj, is optimal, independent of the 

weights wj. Hence the relaxation is vacuous in this case. 
 
• When there are unit clauses, the relaxation provides some 

useful information (proved in the coming lemma). 



Now we show that by using randomized rounding we obtain a (1 – 
1/e)-approx algorithm: 
 

• First solve the LP. Let (y*,z*) be the optimal solution. 
• Secondly apply the method of conditional probabilities with 

pi=y*
I for all i to derive an assignment. 

Here, W
^

 is compared to Z*
LP  and not to ∑

∈CCj
as in the case of 

Johnson’s algorithm. 

If  1 -  
∏

∈ Iji (1 – yi)  
∏
∈Iji yi ≥ αzj    --------  1 

for any feasible solution (y,z) to LP and for any clause Cj, then,   

W
^

 = 
∑
Cj wj  { (1 -  

∏
∈ Iji (1 – pi)  

∏
∈Iji pi)  } 

    = 
∑
Cj  wj { (1 -  

∏
∈ Iji (1 – y*

i)  
∏
∈Iji y*

i)} 

    ≥≥ α 
∑
Cj  wj z

*
j   =   α Z*

LP   ≥  α Z*
IP 

              (from 1) 
The resulting algorithm is an α-approximation algorithm. 

 
Lemma: (for k literals), 
  For any feasible solution (y,z) to LP and for any clause Cj 
with k literals, we have  

1  –  ∏∈ Iji (1 – yi)  ∏∈Iji yi  ≥≥  βk Zj 
where, 

 βk  =  1 – (1 – 1/k)k 



This proof uses the following results, 
• a concave function f(x) satisfies f(x) ≥≥ ax+b over the interval 

[l,u], if the endpoints of the interval, namely f(l) ≥≥ al+b and 
f(u) ≥≥ au+b. 

• the arithmetic/geometric mean inequality states that, 
 

a1 + a2 + … + ak 

--------------------     ≥≥   
k akaa ...21  

          k 
for any collection of nonnegative numbers a1, a2, … , ak 

 
3/4 – Approximation Algorithms: 
 
Johnson’s algorithm is a ¾ -approximation algorithm if all clauses 
contain at least 2 literals. 
 
The previous alg. is a ¾ -approximation alg. if all clauses contain at 
most 2 literals (MAX 2SAT). 
 
The ¾-approximation algorithm in this section is obtained by 
choosing the best truth assignment between the 2 outputs by the 
previous algorithms. More formally, 
 

Theorem: Let W
^

1 denote the expected weight corresponding to 

pi=1/2 for all i and let  W
^

2 denote the expected weight 
corresponding to pi=y*

i  for all i where (y*, z*) is an optimum solution 
to the LP relaxation.  
 
Then, 

max (W
^

1, W
^

2)  ≥  (W
^

1 + W
^

2) / 2  ≥  ¾  Z*
LP 

 
 



 
The explanation for this theorem is as follows, 
The first inequality is trivially satisfied. Then, let Ck denote the set of 
clauses with exactly k literals.  
 
From Johnson’s algorithm, we know that, 

W
^

1 = ∑
≥1k

∑
∈ CCj

αk wj   ≥   ∑
≥1k

∑
∈ CCj

αk wj z
*
j 

where, αk = (1 – 1/2k) 
 

From Lemma,    W
^

2    ≥   ∑
≥1k

∑
∈CCj

βk wj z
*
j 

where,    βk  = 1– ( 1– 1/k)k 
 
 
As a result, (sum both of them and divide by 2), 

(W
^

1 + W
^

2) / 2   ≥   ∑
≥1k

∑
∈CCj

(αk + βk)/2  wj z
*
j 

Now apply values ok k to  α  and  β , 
 
Clearly,    α1 + β1    =    α2 + β2   =   3/2 
For k ≥≥ 3,     αk + βk    ≥    3/2 
 
Therefore, we obtain, 

(W
^

1 + W
^

2) / 2 ≥ ∑
≥1k

∑
∈CCj

3/4  wj z
*
j = ¾Z*

LP 

This proves that this is a ¾-Approximation Algorithm. 

 
 
 
 
 



 
Remarks: 
Some of the remarks on this paper and on MAX SAT are stated 
below: 

• Performance guarantee of Johnson’s algorithm  = ¾, if k ≥ 2  

(k =no. of literals) 

• Better performance guarantee is possible only by strengthening 
the linear programming relaxation. Recent research has shown 
that a 0.878-approximation algorithm for MAX 2SAT is 
obtained by using a form of randomized rounding on a non-
linear programming relaxation. 

• MAX SAT is NP-Complete (Nondeterministic Polynomial time 
complete), even for   MAX 2SAT. So, polynomial-time 
algorithms cannot optimally solve MAX SAT. 

• It is a core of computationally intractable NP-complete 
problems (as in mathematical logic and computing theory). 

• The first problem ever shown to be NP-complete was the 
satisfiability problem. 

• Traditional methods treat SAT as a discrete, constrained 
decision problems, but in recent research, many optimization 
methods, parallel algorithms and practical techniques have 
been developed to solve SAT problems. 

Applications: 
The SAT problems have direct applications in, 
 

• Mathematical logic 
 
• Artificial Intelligence 
 
• Robotics 
 
• VLSI Engineering 
 
• Computing theory 



 
• Machine Vision 

 
• Computer-aided manufacturing 

 
• Computer Graphics 
 
• Text processing 
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