
Page 1 of 5 Report on String Matching

String Matching

Geetha Patil
ID: 312410
Reference: Introduction to Algorithms, by Cormen, Leiserson and Rivest

Introduction:
This paper covers string matching problem and algorithms to solve this problem.
The main algorithms discussed in this paper are Naïve string-matching algorithm, Rabin-
Karp Algorithm and Knuth-Morris-Pratt algorithm. Each algorithm is adopted with
different method, so different time complexity for each.

Input Description: A text string T of length n. A patterns string T of length m.

Problem: Find the first (or all) instances of the pattern in the text.

INPUT OUTPUT

Related to terms to output

Shift (s): The number of position before the pattern occurrences in text.

Invalid Shift: The position after which partial matching occurs.

Valid Shift: The position after which complete matching occurs.

Page 2 of 5 Report on String Matching

Naïve string matching algorithm

Naïve (T, P)
1) n = length(T)
2) m = length(P)
3) for s = 0 to n-m
4) if P[1..m] = T[s+1..s+m]
5) then print "Pattern occurs with shift" s

This algorithm works by marking shift positions. After each shift position, it compare all
characters of pattern with text and outputs all occurrences if there is exact match.

Example: T = C A R L E T O N U N I V E R S I T Y

P = U N I V E R S I TY

Shift=0
T = C A R L E T O N U N I V E R S I T Y
P = U N I V E R S I TY

Shift=1
T = C A R L E T O N U N I V E R S I T Y
P = U N I V E R S I TY

Shift=8
T = C A R L E T O N U N I V E R S I T Y
P = U N I V E R S I TY

Outputs as pattern found in 9th (s+1) position.

Analysis
This for loop from 3 to 5 executes for n-m + 1(we need at least m characters at the end)
times and in iteration we are doing m comparisons. So the total complexity is O(n-m+1).

Rabin-Karp Algorithm
This algorithm performs well in practice and that also generalizes to other algorithms for
related problems. Its worst case running time is O (n-m+1) which is same as Naïve string
matching algorithm but average case running time is O(n+m).

This algorithm makes use of elementary number-theoretic notions. Each character is
converted in to decimal digit and strings of k-consecutive characters are represented as
length-k decimal number.

Example : string 31415 is represented as 31,415

Page 3 of 5 Report on String Matching

Compute decimal value p for pattern P[1..m] and ts for all sub strings of T[1..n] each of
length m .
 Comparing p with all ts with p for all occurrences of pattern.

Computing decimal value is by Horner’s rule,

For pattern, p= P[m] * 10m-1 + P[m-1] * 10 m-2 + P[m-2] * 10 m-3 + … +P[1] * 10 0

Computing p takes O(m).

For pattern, t1 = T[s+m] * 10 m-1 + T[s+m-1] * 10 m-2 + T[s+m-2] * 10 m-3 + .. +T[1] * 10 0

The remaining decimal values ts+1,ts+2….can be computed using ts and all ts+1 can be
calculated in O(n) constant time by using ts.

ts+1 = 10(ts – 10 m-1 [s+1]) + T [s+m+1].

But the only difficulty with this procedure is that p and ts may be too large to work with
conveniently. If P contains m digits (if is too large) then assuming constant time
operations on P is unreasonable. Fortunately there is simple cure for this problem as
computing p and ts ’s modulo by suitable modulus. The modulus will be chosen as prime
number. The computation modulo of p and ts by modulus takes O(n+m) time.

The fallowing procedure makes these ideas precise.

Rabin-Karp-Matcher(T,P,d,q)

1. n = length(T)
2. m = length(P)
3. h = d m-1 mod q
4. p = 0
5. t0 = 0
6. for I = 1 to m
7. do p = (dp + P[I]) mod q
8. t0 = (dt0 + T[I]) mod q
9. for s = 0 to n-m
10. do if p = =ts
11. then if P[1..m] == T[s+1…s+m]
12. then “Pattern occurs with shift “ s
13. if s< n-m
14. then ts+1 = (d(ts -T[s+1]h) + T[s+m+1]) mod q

Analysis:
O(m) is to compute decimal value for pattern and O(n) to compute decimal value for all
sub strings each of length m. So, the total complexity is O(n+m).

Page 4 of 5 Report on String Matching

Knuth-Morris-Pratt algorithm
This is linear time string matching algorithm. This algorithm achieves in O(n+m) running
time by avoiding the invalid shifts. Avoiding invalid shift is by knowledge of prefix
function, which encapsulates about how pattern matches against itself in shift.

KMP-MATCHER (T,P)

1. n = length (T)
2. m = length (P)
3. ���������
	��� -PREFIX-FUNCTION (P)
4. q = 0
5. for i = 1 to n
6. do while q > 0 and P[q+1] != T[i]
7. ����� � � ���
8. if P[q+1] = T [i]
9. then q = q+1
10. if q = m
11. then print “Pattern occurs with shift” i-m
12. � � � ���

COMPUTE-PREFIX-FUNCTION (P)

1. m = length(P)
2. ��� � ���
3. k = 0
4. for q = 2 to m
5. do while k > 0 and P[k+1] != P[q]
6. ����� � � ���
7. if P[k+1] = P [q]
8. then k = k+1
9. � ��� � �
10. �! #"%$��'&
11.
The information that “q” characters of pattern have matched successfully with text
determines the immediate invalid shifts.

Example : T = b a c b a b a b a a b c b a b
 P = a b a b a c a

The prefix value for each character can be tabulated as fallows.

A B A B A C A
0 0 1 2 3 0 1

Page 5 of 5 Report on String Matching

When we compare P with T,
 b a c b a b a b a a b c b a b
 a b a b a c a

We get s = 4 and q (matched characters) =5

Next shift can be, S’ = s + (q-k) where k=prefix function for last matched character.
In this example s’ = 4 + (5-2) = 7 the position could be valid shift. We are avoiding
the positions 5th and 6th as invalid by knowing prefix function value.

 Analysis
The knuth-Morris-Pratt runs in O(n+m) time. The call of Compute-prefix-function
takes O(m) and a similar amortized analysis using the value of q as the potential function,
shows the reminder of KMP-algorithm takes O(n) time. So the total taken is O(n+m)

Conclusion

Naïve String Matching O(n-m+1)m
Rabin-Karp Algorithm Worst case : O(n –m +1)m

Average case : O(n+m)
Knuth-Morris-Pratt Algorithm O(n+m)

