
Report:
Application of A Planar Separator Theorem

Student: Li Yan
School of Computer Science

Carleton University

Abstract. Through the paper Application of
A Planar Separator Theorem by RICHARD J.
LIPTON and ROBERT TARJAN, we get that
any n-vertex planar graph can be divided into
components of roughly equal size by removing

only O(n) vertices. This separator theorem
with a divide-and-conquer strategy can help us
resolve many new complexity planar graph
problems. This report briefly describes six
application of this theorem in planar graph case

.
Introduction. “Divide-and-

conquer” is a solution that divide
original problem into two or more
smaller problems, and then apply for the
method recursively in order to get
solution of original problem. This is an
efficient way to resolve problem. Let’s
see the planar separator theorem firstly,
which is called theorem 1 here.

Theorem 1 [1]. Let G be any n-vertex
planar graph with nonnegative vertex
costs summing to no more than one.
Then the vertices of G can be partitioned
into three sets A, B, C, such that no edge
joins a vertex in A with a vertex in B,
neither A nor B has total vertex cost
exceeding 2/3, and C contains no more
than 2 2 n vertices. Furthermore A,
B, C can be found in O(n) time.

We can get corollary 1 of the above
theorem in the special case of equal-cost
vertices.

Corollary 1. Let G be any n-vertex
planar graph. The vertices of G can be
partitioned into three sets A, B, C, such
that no edge joins a vertex in A with a
vertex in B, neither A nor B contains

more than 2n/3 vertices, and C contains
no more than2 2 n vertices.

The following sections will describe
six different applications of theorem 1 in
planar graph by removing a small
number of vertices on the planar graph.
The solution to resolve NP-complete
problem using theorem 1 will be given
detailedly in this report.

1. Approximation algorithms for
NP-complete problems.
 Using Theorem 1 combined with
divide-and–conquer to find a good
approximate solution to NP-complete
problems on planar graph. Maximum
independent set problems on planar
graph will be resolved by theorem 1, as
an example.

Theorem 3. Let G be an n-vertex
planar graph with nonnegative vertex
costs summing to no more than one and
let 0≤ ε ≤1. Then there is some set C of
O(ε/n) vertices whose removal leaves
G with no connected component of cost
exceeding ε. Furthermore the set C can
be found in O(n log n) time.

Proof as following:
If ε ≤ 1 / n , let C contain all the

vertices of G. Then we can get it.
Otherwise, use the following algorithm:

1) Define method level (x): any
two components on the same
level are vertex-disjoint.

 2) Initialization. Let C = Ø.
 3) If cost (G – C) ≤ε

Return level(i) = 0

 4) While exists connected
component K= {G-C} and cost
 (level(i)_k) >ε Do
 Apply Theorem 1 split K
 Cost (level(i+1)_A1) ≤
 2/3 cost (level(i)_K)
 Cost (level(i+1)_B1) ≤
 2/3 cost (level(i)_K)
 N(C1) ≤ 2 2 nk

C = C ∪ { C1}
i = i + 1

Iterate do step 4 until find the maximum
independent set C.

Analyze:
Assume at level i , in which we got this
kind of set C, then cost(G-C) ≤ε

i = 1 Cost(level(1)) ≥ ε
i = 2 Cost(level(2)) ≥ 3/2ε
i = 3 Cost(level(3)) ≥(3/2)2ε
… …

Thus, at each level i, the cost of this
level satisfies

 Cost (level(i)) ≥ (3/2)i-1ε

Since,the total cost ≤ 1
Vertices n at each level i satisfy the
following inequation:

Ni ≤ 1/ (3/2)i-1ε= (2/3)i-1 /ε
With condition 0 ≤ε≤ 1, induce the
next inequation:

1 ≤ (2/3)k-1/ε≤ (2/3)k-1 n
Maximum level k satisfies:

K ≤ (log3/2n)/2 + 1
Because the time to split a

component is linear in its number of
vertices, and any two components on the
same level are vertex-disjoint, then we
get the total running time of the
algorithm is O(n log n).

How to calculate the size of set C
produced by the algorithm?

Let K1, K2,…., Kl , of sizes n1, n2, …,
nl, respectively at some level i ≥1.

 The number of vertices added to C is
2

=

l

j jn
1

2

 We already got from above proof:
 l ≤ (2/3)i-1 /ε

=

l

j jn
1

 ≤ n

=

l

j jn
1

 is maximized by setting nj = n / l (1
≤ j ≤l);

Thus, 2
=

l

j jn
1

2 ≤ 2 2 ln

≤ 2 2/)1()3/2(/2 −in ε
We can get |C| ≤

2/)1(
1

)3/2(/22 −∞

=
i

i
n ε = O(ε/n).

The following algorithm is used to
find an approximately maximum
independent set I in a planar graph G =
(V, E).

Step 1, Let ε = k(n)/n, and each
vertex vi with cost(vi) = 1/n

 Apply theorem 3 to G,
we can get this kind of set C with
size O(ε/n)

 And cost(G-C) ≤ ε
Since each vertex of
 cost(vi) = 1/n

Thus, we can get the total vertices of
 G-C ≤ ε / (1/n) = (k(n)/n)/(1/n)
 Total vertices of G-C ≤ k(n)
Time: O(n log n)

Step 2,
• check each subset of vertices

for independence in each
connected component of G-C.

• Form a set I as union of
maximum independent sets,
one by one from each
components

For instance, we get G-C as
following,

For the first connected component,
we can get it’s subset of 24 like that

{Ø}, {v1}, {v2}, {v3}, {v4},
{v1, v2 }, { v1, v3}, { v1, v4}, {v2, v3 },
{ v2, v4}, { v3, v4}, {v1, v2 , v3},
{ v1, v2 , v4},{ v2 , v3, v4 },{ v1 ,v3, v4},
{ v1, v2 , v3, v4}

Check each subset to see whether
there exists independent set, if exists,
then add it into maximum set I. So
we can get the time for check each
component with ni vertices is

O(ni
jn2).

The total time required in step 2 is :

O(max {
==

=
n

i
i

n

i

n
i nnn j

11
|2 and O ≤ ni

≤ k(n) }) = O (
)(nk

n k(n) 2k(n)) = O(n

2k(n))
Hence the entire algorithm requires
 O(n • max{log n, 2k(n)}) time.

Analyze the relative error:
Assume, I* be a maximum

independent set of G. And restriction of
I* to one of the connected components
be no larger than the restriction of I to
the same component when C is removed
from G. Then | I* | - | I | = O(n /)(nk).

Since G is planar, G is four-colorable,
and | I* | ≥ n/4.

 So (| I* | - | I |) / | I* | =
 O(1 /)(nk), when n is increasing the
relative error in the size of I tends to
zero.

If we let k(n) = log n, then can get an
O(n2) time algorithm with O(1 / nlog)
relative error.

If we let k(n) = log log n, then we
can get an O(n log n) algorithm with O(1
/ nloglog) relative error.

2. Nonserial dynamic
programming.

We can define many NP-complete
problems, such as the maximum
independent set problem, the graph
coloring problem, and so on, as nonserial
dynamic programming.[2] An
additional concept need to descripted,
the restriction of an objective function f
=

=

m

k kf
1

to a set of variables
1i

x , …, jix
is the objective function f’ = ∑ { fk | fk

depends only upon
1i

x , …, jix }. We will
use algorithm to solve the problem:
maximize f subject to the constraints on
the variables in S.

Step 1. If n < 100 we can treat it by
assignments to the unconstrained
variables. Otherwise, see the step 2.

Step 2. We can use Corollary 1 to the
interaction graph G of f. Partition G into
three sets A, B, C, and let f1 be the
restriction of f to A U C and let f2 be the
restriction of f to

B U C. For each assignment of
values to the variables in C – S, perform
the following steps:

(a) Maximize f1 with values for
variables in S U C by applying
the method recursively;

(b) Maximize f2 with values for
variables in S U C by applying
the method recursively;

(c) Plus (a) and (b) to obtain a
maximum value of f with the
given value for variables in S U
C.

Through this algorithm we can get
that if n ≥ 100, there is at most)(2 nO

subproblems in Step 2, since C is of
O(n) size. And each variables have at
most 2n/3 + 2 2 n ≤ 29n/30
variables. So we have the running time
of the algorithm t(n) ≤ O(n) +

)(2 nO • t(29n/30) ; if n < 100, and t(n) =
O(1). In brifly, the result is t(n) ≤)(2 nO

3. Pebbling. Let G = (V, E) be a
directed acyclic graph with maximum
in-degree k. And define (u, w) is an edge
of G, u is a predecessor of w. We give a
restriction that a vertex may be pebbled
only if all its predecessors have pebbles.
This satisfies the topological order that
an order such that if v is a predecessor of
w, v is pebbled before w.

Theorem 4. Any n-vertex planar
acyclic directed graph with maximum in-
degree k can be pebbled using O (n +
k log2n) pebbles.

Proof. Assume there is a graph G =
(V, E) , а = 2 2 and ß = 2/3. If n = 1,
pebble the single vertex of G. If n >1,
find a vertex partition A, B, C satisfying
Corollary 1. And pebble the vertices of
G in topological order. After pebble a
vertex v, delete all pebbles except those
on C. Using this method recursively. If
p(n) is the maximum number of pebbles
required by this method on any n-vertex
graph, then we can get:
 p(1) = 1,
 p(n) ≤ а n + k + p(3/2n)
 if n > 1

It’s easy to get that p(n) is O(n + k
log2 n).

We can reduce the number of
pebbling steps by a polynomial bound as
following theorem shows.

Theorem 5. Any n-vertex planar
acyclic directed graph with maximum in-
degree k can be pebbled using O(n2/3 + k)
pebbles in O(n5/3) time.

Proof. We can define C be a set of
O(n2/3) vertices whose removal leaves G
with no weakly connected component
containing no more than n2/3 vertices.
There exists such a set C according to
Theorem 2. Recursively perform
pebbling a predecessor u by deleting all
pebbles from G except those on vertices
in C or on predecessors of u, and find the
weakly connected component in G
minus C containing u. We know that the
number of pebbles in pebble vertices in
C is O(n2/3), and of pebble each weakly
connected component is n2/3 , and of
pebble predecessors of vertex v is k.
Bound the number of pebbling steps, we
can get the total pebbling time is n +
∑v∈V d1(v) n2/3 ≤ n + (3n - 3) n2/3 = O(n5/3)

4. Lower bounds on Boolean
circuit size.

Here the size the means the number
of vertices. A Boolean circuit is an
acyclic directed graph in which each
vertex has in-degree zero or two, and the
predecessors of each vertex are ordered,
and corresponding to each vertex v of in-
degree two is a binary Boolean operation
bv. There is a Boolean function which is
associcated with each vertex of the
circuit, which the vertex computes. This
function is defined like this, with each k
vertices vi of in-degree zero (inputs), we
associate a variable xi and an function

ivf (xi) = xi. With each vertex w in
degree two having predecessors u, v, and

we associate the function fw = bw (fu, fv).
The circuit computes the set of functions
which associate with its vertices of out-
degree zero(outputs). We will use
algorithm to get lower bounds on the
size of this Boolean circuits which
compute certain functions. If we assume
that the circuits are planar, it’s easy to
obtain such lower bounds using
Theorem 1. We can find a way to
convert circuit graph into a planar circuit
as following description. The first step is
that we can embed the circuit in a plane,
and some edges may cross. And then we
can replace each pair of crossing edges
by the crossover circuit which is
illustrated in following figure. As we
know that any lower bound on the size
of planar circuits is also a lower bound
on the total number of vertices and edge
crossings in any planar which represent a
corresponding nonplanar circuit. But this
lower bounds imply that it may be
expensive to realize certain commonly
used functions in hardware in a
technology.

Figure Elimination of a crossover by use of three
“exclusive or” gate. Reference [11]

Based on Theorem 1 we can get next
Theorem.

Theorem 6. Any m-input, m-output
planar superconcentrator contains at
least m2/72 vertices.

Proof. Give a definition that a
superconcentrator is an acyclic directed
graph with m inputs and m outputs, and

any set of k inputs and any set of k
outputs are joined by k vertex-disjoint
paths, for all k in the range 1 ≤ k ≤ m.
Let G be an m-input, and m-output
planar superconcentrator. We assign
each input and output G a cost of 1/(2m),
and every other vertex a cost zero.
Applying Theorem 1, we can get three
partitions A, B, C on G. (ignoring edge
directions). Suppose C have p inputs and
outputs, then A contains at least m/3 –
p/2 inputs and at most m – p/2 inputs and
outputs; and B contains at least m – p –
(m/2 – p/4) = m/2 – 3p/4 outputs. Define
k = min{ 2/3/ pm − , � 4/32/ pm − }.
Since G is a superconcentrator, any set
of k inputs in A and any set of k outputs
in B are joined by k vertex-disjoint paths.
And each path must contain a vertex in
C which is neither an input nor an output.
Thus 2 2 n - p ≥ min{m/3 – p/2, m/2
– 3p/4}, and n ≥ m2/72.

Because the property of being a
superconcentrator is too strong to be
useful in deriving lower bounds on the
complexity of functions. We use shifting
property of G, which is that in G = (V,
E), there exists any k in the range 1≤ k≤
m, any l in the range 0 ≤ l ≤ m – k,
and any subset of k sources {

1i
v ,…,

ki
v },

in which i1, i2,…, ik ≤ m – l, there are k
vertex-disjoint paths joining the set of
inputs {

1i
v ,…,

ki
v } with the set of

outputs{ liw +1
,…, lik

w + }. So we lead to
Theorem 7.

Theorem 7. Let G be a planar
acyclic directed graph with the shifting
property. Then C contains at
lease 22/m / 162 vertices.

There are several Corollary are
induced here, such that

Corollary 2. Any planar shifting
circuit has at least �

22/m / 162
vertices.

Corollary 3. Any planar circuit for
computing Boolean convolution has at
least �

22/m / 162 vertices.
Corollary 4. any planar circuit for

computing the product of two m bit
binary integers has at least �

22/m /
162 vertices.

And one Theorem 8 . Any planar
circuit G for multiplying two m × m
Boolean matrices contains at least cm4

vertices, for some positive constant c.
 The proof of these are shown on [3][4]

5. Embedding of data structures

References
[1] R.J.LIPTON AND R.E. TARJAN, A separator

theorem for planar graphs, SIAM J. Appl. Math.,
36 (1979), pp.177-189

[2] U. BERTELE AND F. BRIOSCHI, Nonserial
Dynamic Programming, Academic Press, New
York, 1972

[3] L.G.VALIANT, On non-linear lower bounds in
computational complexity, Proc. Seventh Annual
ACM Symp. on Theory of Computing (1975),
pp.45-53

[4] L.G.VALIANT, Graph-theoretic arguments in
low-level complexity, Computer Science Dept.,
University of Edinburgh, 1977.

