A New Approach to the Maximum-Flow Problem

Andrew V. Goldberg
and

Robert E. Tarjan

Journal of ACM (JACM) Volume 35 Issue 4, Oct.1988 , Pages 921-940

Introduction:

This algorithm maintains a preflow in the original network and pushes local flow excess toward the sink along which it estimates to be the shortest paths in the residual graph.

This pushing of flow changes the residual graph, and paths to the sink may become saturated. Excess that cannot be moved to the sink is returned to the source, also along estimated shortest paths.

Only when the algorithm terminates does the preflow become a flow, and then it is a maximum flow.

Algorithm:

Let G = (V, E) be a directed graph with vertex set V and edge set E.
n is the size of V.

m is the size of E.

A graph G = (V,E) is a flow network if it has two distinguished vertices,

a source s and a sink t, and a positive real-valued capacity c(v,w) for each

edge(v,w) (E

A flow f on G is real-valued function on vertex pairs satisfying the

following constraints:

1. f(v,w) <= c(v.w) for all (v,w) (V x V (capacity constraint)

2. f(v,w) = -f(w,v) for all (v,w) (V x V (antisymmetry constraint)

3. (f(u,v) = 0 for all v (V – {s,t} (flow conservation constraint)

 u (V

The value (f (of a flow f is the net flow into the sink:
 (f (= (f (v,t)

 v(V

 A maximum flow is flow of maximum value.

This algorithm solves the problem by manipulating a preflow f on the network.

A preflow is a real-valued function on vertex pairs satisfying (1) and (2) as well as the following weakened form of (3).

 (f (u,v) >= 0 for all v (V – {s}

 u(V

The total flow into any vertex v(s is at least as great as the total flow out of v.

How to move flow excess from one vertex to another ?
Flow excess e(v) of a vertex v is defined to be (f (u,v) , the net flow into v.

 u(V

Residual capacity r(v,w) of a vertex pair (v,w) is defined to be c(v,w) – f(v,w).

pv,w = min (e(v) , r(v,w))

Amount of flow p can be moved from v to w by adding it to f(v,w) (and subtracting it from f(w,v)).

How to estimate the distance from a vertex to s or to t?

Valid labeling d is defined to be a function from vertices to the nonnegative integers and infinity, such that d(s) = n , d(t) = 0 , and d(v) <= d(w) + 1 for every residual edge (v,w).

A pair (v,w) is a residual edge if r(v,w) > 0.

A vertex v is active if v (V – {s,t}, d(v)<œ and e(v) > 0.

Pseudocode of the algorithm:

Push(v,w)
Applicability : v is active, r(v,w) > 0 and d(v) = d(w) + 1.

Action : Send p = min(e(v),r(v,w)) units of flow from v to w as follows.

 f(v,w) (f(v,w) + p; f(w,v) (f(w,v) – p;

 e(v) (e(v) – p; e(w) (e(w) + p.

Relabel(v)

Applicability : v is active and (w (V , r(v,w) > 0 (d(v) <= d(w)

Action : d(v) (min{d(w) + 1| (v,w) (E}

 (If this minimum is over an empty set, d(v) (œ)

E is the set of residual edges.

Procedure Max-Flow (V, E, s, t, c);
 <<initialization>>

 <<initialize preflow>>

 ((v,w) ((V – {s}) x (V – {s}) do begin

 f(v,w) (0; f(w,v) (0;

 end;

 (v (V do begin

 f(s,v) (c(s,v);

 f(v,s) (-c(s,v);

 end;

 <<initialize label and excesses>>

d(s) (n;
 (v (V – {s} do begin

 d(v) (0;

 e(v) (f(s, v);

 end;

 <<loop>>

 while (a basic operation that applies do

 select a basic operation and apply it;

 return(f);

end.

Running time:
The algorithm and its analysis are simple and intutive, yet the algorithm runs as fast as any other known method on dense graphs, achieving an O(n3) time bound on an n-vertex graph.

By using dynamic tree data structure a version of the algorithm running in

O(nm log(n2/m)) time on an n-vertex, m-edge graph can be obtained.

Lemmas:

Lemma 1:

If f is a preflow, d is any valid labeling for f, and v is any active vertex, then either a push or a relabel operation is applicable to v.

Lemma 2:

The algorithm maintains the invariant that d is a valid labeling.

Lemma3:

A flow f is maximum if and only if there is no augmenting path; that is, t is not reachable from s in G.

Lemma 4:

If f is preflow and d is any valid labeling for f, then the sink t is not reachable from the source s in the residual graph G.

Lemma5:

If f is a preflow and v is a vertex with positive excess, then the source s is reachable from v in the residual graph g.

Lemma6:

For any vertex v, the distance label d(v) never decreases. An application of a relabeling operation to v increases d(v).

Lemma7:

At any time during the execution of the algorithm and for any vertex v(V, d(v) <= 2n-1.

Lemma8:

The number of relabeling operations is at most 2n-1 per vertex and at most (2n-1) (n-2) < 2n2 overall.

Lemma9:

The number of saturating push operations is at most 2nm.

Lemma10:

The number of nonsaturating pushing operations is at most 4n2m.

Lemma11:

The generic algorithm terminates after O(n2m) basic operations.

The proof of all these lemmas can be found in the paper.

Conclusion:

This algorithm is simple enough to be potentially practical. The problem of finding a maximum flow in a directed graph with edge capacities arises in many setting in operation research and other fields.

Unlike known efficient maximum-flow algorithms which work by finding augmenting paths, either one path at a time or all shortest-length augmenting paths at once an alternative method based on preflow is used.

