Report on Randomized Search Trees *

Xinhong Zhang ♪
ABSTRACT

This report describes a randomized strategy for maintaining balance in dynamically changing search trees that has optimal expected behavior. It also discusses ways of implementing the randomized strategy so that no explicit balance information is maintained. At last, it offers a brief comparison of randomized search trees and skip lists.

1. INTRODUCTION

To store, organize collections of items efficiently so as to search an item quickly given its key is the common problem in computer science. Search tree is usually employed to store the items when the keys are drawn from a large totally ordered set. Binary search tree is the simplest form of such a tree, however it is easy to lose balance.

AVL tree, (a, b) tree, BB(α) tree, red-black tree and many others have been developed for maintaining approximate balance. All these trees guarantee that accesses and updates can be performed in O(log n) worst case time. Some sort of balance information stored with the nodes is used for the restructuring during updates. The restructuring can be done via “rotations”.

Sometimes it is desirable that the items with high access frequency can be accessed more easily than others by storing them close to the root. Biased 2-3 tree and D tree are such kind of “optimal” tree.
All the strategies discussed so far involve reasonably complex restructuring algorithms that require some balance information to be stored with the tree nodes. However, AVL tree and red-black tree require only on bit to be stored with every node for unweighted case. Splay tree requires absolutely no balance information to be maintained, however, the time bounds are taken amortized. Splay tree requires a substantial amount of restructuring not only during updates but also during accesses, which makes them unusable for structures such as range trees and segment trees in which rotations are expensive. Scapegoat tree also needs basically no balance information and achieves logarithmic search time

* This report is based on the paper [1].

♪ School of Computer Science, Carleton University, xzhangc@scs.carleton.ca.

even in the worst case. Nevertheless, logarithmic update time is only achieved in the amortized bounds. Scapegoat tree also do not apply for range trees or segment trees structure.

This report introduces a randomized strategy to balance unweighted or weighted search tree, which achieve expected case bounds that are comparable with the deterministic worst case or amortized bounds mentioned above. The expected bounds do not rely on any assumptions about the input. For unweighted case, this strategy can be implemented without storing explicit balance information.

 Skip lists [2] are another data structure using probabilistic balancing. Although the two structures are very different they have almost identical expected performance characteristics. The report offers a short comparison in the last section.

2. TREAPS

Treap is the basic structure underlying randomized search trees. Its name comes from “tree” and “heap”.

Let X be a set of items each of which has associated with it a key and a priority. A treap for X is a special binary search tree in which node set X is arranged in in-order with respect to the keys and in heap-order (the key of a node less than the key of its parent) with regard to the priority.

Let T be the treap storing set X. Given the key of some item x∈X the item can easily be located in T via the usual search tree algorithm. The access time is proportional to the depth of x in the tree T. How about updates? To insert a new item z to T, first use the key of z to attach it to T in the appropriate leaf position, then, use the priority of z to rotate it up until it has a parent with bigger priority. Deletion of an item x from T is the reverse of insertion. First locate x, then rotate it down until it becomes a leaf, and finally cut the leaf. Split is used to separate a set X of items into two sets X1 and X2 of items with keys smaller or bigger than the key of an element a respectively. In order to split, simply insert an item with key a and “infinite” priority. By the heap-order property the new item will be at the root of the new heap. By the in-order property the left subtree of the root will be a treap for X1 and the right subtree will be a treap for X2. Conversely, join is used to combine two sets X1 and X2 into one, with the assumption that the keys of items in X1 are smaller than the keys of items from X2. In order to join the treaps of such two sets X1 and X2, simply create a dummy root whose left subtree is a treap for X1 and whose right subtree is a treap for X2, and perform a delete operation on the dummy root.

Sometimes handles or fingers are available to accelerate operations on treaps. For instance, if a handle pointing to a node x is available, then deleting x reduces just to rotating it down into leaf position and cutting it and saved the search time. Similarly, to insert an item x, if a handle to the successor (or predecessor) s of x in the resulting treap is known, search location for x can be started from s instead of root. Finger search a node y in a treap follows the unique path between x and y, where x has a handle pointing to it. Also, splits and joins of treaps can be performed faster if handles to the minimum and maximum key items in the treaps are available.

At time it is desirable to separate a set of X of items into such two sets of items X1 and X2 that their keys are in the range of a and b and out of this range respectively, where a and b are some given element of the key universe. Such an operation is so-called excision, which can be achieved via splits and joins.

3. RANDOMIZED SEARCH TREES

Let X be a set of items, each of which is uniquely identified by a key that is drawn from a totally ordered set. We define a randomized search tree for X to be a treap for X where the priorities of the items are independent, identically distributed continuous random variables.

Theorem 3.1. A randomized search tree storing n items has the expected performance characteristics listed in the table below:
Performance measure Bound on expectation

Access time O(logn)

Insertion time O(logn)

Insertion with handle on predecessor or successor ח O(1)

Deletion time O(logn)

Deletion with handleח O(1)

Number of rotations per update 2

Finger search over distance dט O(logd)

Fast finger search over distance dט O(log min{d,n-d})

Join two trees of size m and n O(log max{m,n})

Split a tree into trees of size m and n O(log max{m,n})

Fast join or split ם O(log min{m,n})

Excision a tree of size dט O(log min{d,n-d})

ח Requires parent pointers.

ט Requires parent pointers and some additional information, see 5.4.

ם Requires some parent pointers, see 5.7,5.8.

Now let X be a set of items identifiable by keys drawn from a totally ordered universe. Moreover, assume that every item x∈X has associated with it an integer weight w (x)>0. We define the weighted randomized search tree for X as a treap for X where the priorities are independent continuous random variables defined as follows: Let F be a fixed continuous probability distribution. The priority of element x is the maximum of w (x) independent random variables, each with distribution F.

Theorem 3.2. Let T be a weighted randomized search tree for a set X of weighted items. the following table lists the expected performance characteristics of T. Here W denotes the sum of the weights of the items in X; for an item x, the predecessor and the successor (by key rank) in X are denoted by x- and x+, respectively; Tmin and Tmax denote the items of minimal and maximal key rank in X.
Performance measure Bound on expectation

Time to access item x O(1+logW/w(x))

Time to insert item x

 O(1+log((W+w(x))/min{w(x-),w(x),w(x+)})

Time to delete item x

 O(1+log(W/min{w(x-),w(x),w(x+)})

Insertion time for item x with handle on predecessor ח
 O(1+log(1+w(x)/w(x-)+w(x)/w(x+)+ w(x-)/w(x+))

Time to delete item x with handle ח
 O(1+log(1+w(x)/w(x-)+w(x)/w(x+))

Number of rotations per update on item x
 O(1+log(1+w(x)/w(x-)+w(x)/w(x+))

Finger search between x and y, V is total weight of items between, and including x and y ט O(logV/min{w(x),w(y)})

Time to join trees T1 and T2 of weight W1 and W2
Time to split T into trees T1 and T2 of weight W1 and W2
 O(1+log(W1/w(T1max)+ log(W2/w(T2min))

Time for fast join or fast split ם
 O(1+logmin{W1/w(T1max), W2/w(T2min)})

ח Requires parent pointers.

ט Requires parent pointers and some additional information, see 5.4.

ם Requires some parent pointers, see 5.7 and 5.8.

It is not really necessary to use continuous random variables. Here requiring it is to ensure that with probability 1 all priorities are distinct. In practice, using discrete random numbers drawn uniformly from a large enough range (such as 0 to 231) will be adequate for most applications.

The balance information per node is extensive, nevertheless it is possible to obviate this. Section 7 presents various strategies of maintaining randomized search trees without storing explicit random priorities.

Weighted randomized search trees can be adapted naturally to observe access frequencies. Whenever an item x is accessed, a new random number r is generated according to distribution F, if r is bigger than the current priority of x, then make r the new priority of x, and, if necessary, rotate x up in the tree to reestablish the heap-property. After x has been accessed k times its priority will be the maximum of k i.i.d. random variables. Hence, the expected depth of x in the tree will be O(log(1/p)), where p is the access frequency of x, p=k/A, with A being the total number of accesses to the tree.

4. ANALYSIS OF RANDOMIZED SEARCH TREES

Throughout this section, the treap T is a set X = {xi = (ki, pi) | 1 ≤ i ≤ n} of n items, numbered by increasing key rank, ki < ki+1 for 1≤ i ≤ n. The priorities pi will be random variables. As for a fixed set of keys ki the shape of the treap T for X depends on the priorities, the interesting quantities will be random variables, for which it makes sense to analyze expectations, distributions.

To make things easy, the following two indicator random variables will be used:

Theorem 4.1. Let 1 ≤ l, m ≤ n, and let l<m.
(i)
D(xl) = ∑1 ≤ i ≤ n Ai,l
(ii)
S(xl) = ∑1 ≤ j ≤ n Al,j
(iii) P(xl,xm) = 1+ ∑1≤ i <m (Ai,l - Ci:l,m) +

 ∑l <i ≤n (Ai,m - Ci:l,m)

(iv)
SL(xl) = ∑1≤i<l (Ai,l-1 - Ci:l-1,l)

SR(xl) = ∑l<i ≤n (Ai,l+1 - Ci:l,l+1)

Proof: (i) (ii) is followed the definition.

For (iii) The path from xl to xm is divided by their lowest common ancestor v into two parts. The part from xl to v, which consists exactly of the ancestors of xl minus the common ancestors of xl and xm. Similarly the second sum accounts for the path between xl and v.

For (iv) it suffices to consider SL(xl), by symmetry. If xl has a left subtree, the the lowest node on its right spine must be xl-1 . The latter is similar as (iii). //

Let ai,j = Ex[Ai,j] and ci:l,m = Ex[Ci:l,m], we immediately get the following:

Corollary 4.2. Let 1 ≤ l, m ≤ n, and let l<m. l
(i)
Ex[D(xl)] = ∑1≤ i ≤n ai,l
(ii)
Ex[S(xl)] = ∑1≤ j ≤n al,j
(iii)
Ex[P(xl,xm)] = 1+ ∑1≤ i <m (ai,l - ci:l,m) +

 ∑l <i ≤n (ai,m - ci:l,m)

(iv)
Ex[SL(xl)] = ∑1≤i<l (ai,l-1 - ci:l-1,l)

Ex[SR(xl)] = ∑l<i ≤n (ai,l+1 - ci:l,l+1)

Ancestor Lemma 4.3. Let T be the treap for X, and 1≤ i, j ≤n. Then, assuming that all priorities are distinct, xi is an ancestor of xj in T iff among all xh, with h between and including i and j, the item xi has the largest priority.

Proof: Let xm be the item with the largest priority in T, and let X’={xv |1<v<m} and X’’={xu |m<u<n}. By the definition of a treap, xm will be the root of T and its left and right subtrees will be treaps for X’ and X’’, respectively.

Clearly our ancestor characterization is correct for all pairs of nodes involving the root xm. It is also correct for all pair xv∈X’ and xu∈X’’: they lie in different subtrees, and hence are not ancestor-related.

Finally, by induction the characterization is correct for all pairs of nodes in the treap for X’ and for all pairs of nodes in the treap for X’’. //

Common Ancestor Lemma 4.4. Let T be the treap for X, and 1≤ l,m,i ≤n. Let pv denote the priority of item xv. Then, assuming that all priorities are distinct, xi is a common ancestor of xl and xm in T iff

(1) pi = max{ pv | i≤v≤ m}
if 1≤i≤ l,
(2) pi = max{ pv | l≤v≤ m}
if l≤i≤ m,
(3) pi = max{ pv | l≤v≤ i}
if m≤i≤n,
which can be summarized as

pi = max{ pv |min{i,l,m}≤v≤max{i,l,m}}.

Proof:

 i

 i

 i

 l
 m

 m l

 l
(2)
m
 (1)
 (3) //

4.1 The Unweighted Case

Ancestor Probability Corollary 4.5. In an (unweighted) randomized search tree xi is an ancestor of xj with probability 1/(|i-j|+1), in other word we have

ai,j = 1/(|i-j|+1).
Proof: By ancestor lemma, the priority of xi should be the largest among the |i-j|+1 items between xi and xj. Since priorities are i.i.d. continuous random variables, this happens with probability 1/(|i-j|+1). //

Common Ancestor Probability Corollary 4.6. Let 1 ≤ l < m ≤ n. In the case of unweighted randomized search tree the expectation for common ancestorship is given by

(1) ci:l,m = 1/ (m-i+1)

if 1≤i≤ l,
(2) ci:l,m = 1/ (m-l+1)

if l≤i≤ m,
(3) ci:l,m = 1/ (i-l+1)

if m≤i≤n,
which can be summarized as

ci:l,m = 1/(max{i,j,m}-min{i,j,m}+1).
Proof: Using common ancestor lemma, it is similar as the proof of ancestor probability. //

Harmonic numbers:

 Hn =1+1/2+…+1/n=∑1≤ i ≤ n 1/i= ln n + O(1)

Theorem 4.7. Let 1 ≤ l, m ≤ n, and let l<m. In an unweighted randomized search tree of n nodes the following expectations hold:

(i)
Ex[D(xl)] = Hl + Hn+1-l - 1< 1 + 2ln n
(ii)
Ex[S(xl)] = Hl + Hn+1-l - 1< 1 + 2ln n
(iii)
Ex[P(xl,xm)] = 4Hm-l+1 – (Hm-Hl)

- (Hn+1-l-Hn+1-m)-3

< 1 + 4ln (m-l+1)
(iv)
Ex[SL(xl)] = 1-1/l

Ex[SR(xl)] = 1-1/(n+1-l)

Proof: Use Corollary 4.2 and plug in the values from Corollary 4.5 and 4.6.

For instance,

For (i) Ex[D(xl)] = ∑1≤ i ≤n ai,l
= ∑1≤ i ≤n 1/|i-l|+1
= ∑1≤ i ≤l 1/(l-i+1)+∑l+1≤ i ≤n 1/(i-l+1)
=∑1≤ i ≤l 1/i + ∑1≤ i ≤(n-l+1) 1/i -1

=Hl + Hn+1-l -1 = lnl+ln(n+1-l) +O(1)

=ln l(n+1-l) +O(1)

< 2lnn + O(1),
 since 1≤ l ≤ n. //

Lemma 4.8. In an unweighed randomized search tree with n>1 nodes we have for index 1≤l≤ n and any c>1

Pr[D(xl)≥1+2c(ln n)] < 2(n/e)-cln(c/e)
This lemma implies that the probability that the height of a randomized search tree is more than logarithmic is exceedingly small, and hence the tree’s expected height is logarithmic also.

4.2 The Weighted Case

For i≤j let wi:j denote ∑i≤h≤j wh, and for i>j define wi:j = wj:i. Let W= w1:n denote the total weight.

Corollary 4.9. In an weighted randomized search tree xi is an ancestor of xj with probability wi / wi:j , in other word we have

ai,j = wi / wi:j

Proof: Use ancestor lemma. //

Corollary 4.10. Let 1≤l<m≤ n. In the case of unweighted randomized search trees the expectation for common ancestorship is given by

ci:l,m = wi / wi:m
if 1≤i≤ l,

ci:l,m = wi / wl:m
if l≤i≤ m,

ci:l,m = wi / wl:i
if m≤i≤ n.

Proof: Use common ancestor lemma. //
Theorem 4.11. Let 1 ≤ l, m ≤ n, and let l<m. In an weighted randomized search tree with n nodes of total weight w the following expectations hold:

(i) Ex[D(xl)] = ∑1≤i≤n wi / wi:l

 < 1+ 2ln(W/ wl)

(ii) Ex[S(xl)] = ∑1≤i≤n wi / wi:l
(iii)Ex[P(xl,xm)] =1+ ∑1≤i≤l (wi/wi:l -wi/wi:m)
+∑l≤i≤m (wi/wl:i -wi/wi:m-2 wi/wl:m)

+∑m≤i≤n (wi/wm:i -wi/wl:i)

< 1+2ln (wl :m/wl) +2ln (wl :m/wm)
(iv)
Ex[SL(xl)] = ∑1≤i<l(wi/wi:l-1-wi/wi:l)

<1+ln (1+wl /wl-1)

Ex[SR(xl)] = ∑l<i≤n(wi/wl+1:i-wi/wl :i)

<1+ln (1+wl /wl+1)

Proof: Use Corollary 4.2 and plug in the values from Corollary 4.9 and 4.10, things like Theorem 4.7. Using the following two inequalities that can easily be verified considering the area underneath the curve f(x)=1/x:

(1)
α/A≤ln A – ln(A- α) for 0≤ α<A.

(2)
α/A- α/B≤(lnA-ln(A- α))-(lnB-ln(B- α))

 for 0≤ α<A≤B. //
5. ANALYSIS OF OPERATIONS ON RANDOMIZED SEARCH TREES

This section shows the operations on unweighted and weighted randomized search trees and prove all bounds claimed in Theorem 3.1 and 3.2.

5.1 Searches.

The time for a successful search is proportional to the number of ancestors of x, which is O(logn) in the unweighted and O(1+logW/w(x)) in the weighted case by Theorem 4.7 and 4.1.

An unsuccessful search for a key that falls between the keys of successive items x- and x+ takes expected time O(logn) in the unweighted and O(1+log(W/min{w(x-),w(x+)}) in the weighted case, since such a search must terminate either at x- or x+ .

5.2 Insertions and Deletions.

To insert an item into a treap, first find its leaf position by its key, then rotate it up by its priority. The number of rotation can be at most the search path, thus the insertion time is proportional to the time needed for an unsuccessful search, which in expectation is O(logn) in the unweighted and O(1+log(W/min{w(x-),w(x+)}) in the weighted case.

The deletion inverts the insertion, so it costs the same time as insertion.

The number of down rotation during a deletion is the sum of the lengths of the right spine of the left subtree of x and the left spine of the right subtree of x, which in expectation is less than 2 in the unweighted and O(1+log(1+w(x)/w(x-)+w(x)/w(x+)) in the weighted case by Theorem 4.7 and 4.11. Insertion takes the same number of rotation as deletion.

5.3 Insertion and Deletions Using Handles.

With Handles, during deletion, it only needs the down rotations to leaf position, and search is not necessary. So, The time bound is O(1) in the unweighted and O(1+log(1+w(x)/w(x-)+w(x)/w(x+)) in the weighted case.

During insertion, with handles on predecessor and successor, the time bound is same as the deletion. If just a pointer to x- is available, x cannot be attached as a leaf to x- since it has a nonempty right subtree, then the additional cost of locating x+ is incurred. As x+ is

the bottom element of the left spine of the right subtree of x- and locating it amounts to traversing the spine, which cost O(1) in the unweighted and O(1+log(1+w(x-)/w(x+))) in the weighted case, so the total expected cost is O(1) and O(1+log(1+w(x)/w(x-)+w(x)/w(x+)+ w(x-)/w(x+)) in the respective cases.

5.4 Finger Searches.

In a finger search, we assume have a finger on item xl and using this information we quickly want to locate xm with l<m. The most nature way to perform such a search is to follow the unique path between xl and xm . The expected of the path is given by Theorems 4.7 and 4.11 for weighted and unweighted randomized search trees, which would immediately yield the bounds of Theorems 3.1 and 3.2. But, how can one tell tha the common ancestor u of xl and xm has been reached?

During the ascent toward the root, if one reaches a node z whose key is larger than the search key k, then one has gone too far. This excess path between u and z may be much longer than the path between xl and xm and traversing this path may dominate the running time of the finger search.

There are several ways of dealing with this excess path problem. One is try to argue that this excess path has only constant length. However, in unweighted case, it is true. Other methods store extra information in the tree that either allows us to shortcut such excess paths or obviates the need to traverse them.

Extra Pointers. Define the left parent of v to be the first node on the path form v to the root whose key is smaller than the key of v, and the right parent of v to be the first node on the path with larger key. We store extra two pointers set to the left and right parent of v or to nil if parents not existing besides the two children pointers.

A finger search start at xl chase right parent pointer until either a nil pointer is reached or the next node has key larger than k. At this point we know the common ancestor u of xl and xm has been reached, and using the key k the path from u to xm can be found by following children pointers. So the number of links traversed is at most one more than the length of the path between xl and xm, and that it can be much smaller because of the shortcuts provided by the right parent pointers.

Extra keys. With every node u in the tree one stores min(u) and max(u), the smallest and largest key of any item in the subtree rooted at u. Then, it can be seen in constant time whether an item can be in the subtree rooted at u: its key has to lie in the range between min(u) and max(u). So, the common ancestor of xl and xm is than the first node z on the path from xl to the root with min(z) ≤k≤min(z).

5.5 Fast Finger Searches.

Always maintain a pointer to Tmin and Tmax, the smallest and largest key items in the tree. If a finger search is started from xl to xm with l<m, start anther finger search from Tmax=xn in parallel. By Theorem 4.7, The expected time for this search is O(min{long(m-l+1),log(n-m+1)}. If we let d=m-l+1 be the distance between x and y, then this is at most O(min{log d, log(n-d)})= O(log min{d,n-d}), as claimed in Theorem 3.1, since n-m+1≤d.

5.6 Joins and Splits.

To join two treaps T1 and T2 with all keys in T1 smaller than all keys in T2, first create a new tree T whose root r has a left subtree T1 and a right subtree T2, then delete r from T. Creating T takes constant time. Deleting r, takes the time proportional to the length of the right spine of T1 plus the length of the left spine of T2. This is in expectation O(logm+logn)=O(log max({m,n})if T1 and T2 are unweighted randomized search trees with m and n items respectively by Theorem 4.7. In the weighted case Theorem 4.11 implies an expected bound of O(1+log(W1/w(T1max)+ log(W2/w(T2min)), if we let Wi denote the total weight of Ti.

Splitting a treap T into a treap T1 with all keys smaller than k and treap T2 with all keys larger than k is achieved by essentially reversing the join operation. The time consumed is same as join operation.

5.7 Fast splits.

The main idea is to shorten the search time for the correct leaf position and to reduce the number of subsequent rotations. Assume the size of the eventual T1 is small. Then it makes sense to determine the correct leaf position for x in T by a finger search starting at Tmin. Let z be the lowest common ancestor of Tmin and the leaf position added for x. Now, when rotating x up the tree one can stop as soon as z becomes the left child of x. Then the current left subtree of x will be T1, and T2 is obtained by simply replacing the subtree rooted at x by the right subtree of x.

The time to do all this proportional to the length L of the path between Tmin and the leaf of x, and the number of rotations is exactly the number of edges on this path between x and z. In the unweighted case, the expected value of L is by Theorem 4.7. O(logm), where m is the number of nodes that end up in T1. By assumption m is smaller than the number of nodes n that end up in T2. As rotations take constant time, the total expected time for the fast split would be O(log min{m,n}).

5.8 Fast Joins.

Fast join is the reversion of the operation of a fast split. The time bound is the same as a fast split.

5.9 Excisions.

Let x and y be two items in an n node treap T and assume we have a finger on at least one of them. To extract from T the treap T’ containing all the items with keys between and including the keys of x and y, leaving in T all the remaining items. First we show that we can do this in time proportional to P(x,y) plus SL(x) and SR(y). By Theorem 4.7 the expectation of this would be O(log d).

With a finger search first identify the path connecting x and y, and with this the lowest common ancestor u of x and y, all in time O(P(x,y). Let Tu be the subtree rooted at u, LL be the sequence of nodes on the path from x to u with keys less than the key of x and let a be the sequence of the remaining nodes. Symmetrically, we define RR and B. Now, T’ has as its root u; its left subtree is formed by stringing together the nodes in A along with their right subtrees; its right subtree is formed by stringing together the nodes in B thgether with their left subtrees. Clearly, T’ can be formed in time O(P(x,y)).

The remaining pieces of Tu can be put back into a treap as follows: Form a treap L by stringing together the nodes in LL together with their left subtrees, adding the left subtree of x at the bottom of the right spine. Symmetrically, form a treap R. Clearly, L and R can be constructed in time O(P(x,y)). As the time for the join operation is SL(x)+SR(y), this sum is bounded by P(x,y)+SL(x)+SR(y).

The other method to achieve O(long(n-d) is to split T into treaps L and T’’, where L contains all items with key less than the key of x; split T’’ into the desired T’ and R, where R contains all items with key greater than y’s; finally join L and R to form the remainder treap.

Of course, d is not usually known in advance. We face the dilemma of which method to choose. This can be solved as follows: Do a finger search from x to y, and a finger search from Tmin to x and followed by a finger search from Tmax to y. If the search from x to y is completed first, use the first method for the excision, otherwise use the second method.

6. IMPLICIT PRIORITIES

6.1 Priorities From Hash Functions.

Choose and associate with a randomized search tree a hash function h. For every item in the tree the priority is then declared to be h(k), where k is the key of the item.

A good hash function should be random enough so that the generated priorities behave like random numbers. A randomly selected degree-7 polynomial q does the trick. If one is only interested in normal search and update times, then a randomly selected degree-r polynomial suffices. In order to make this scheme applicable for any sort of key type we apply q to the address of the node where the respective item is stored instead of to the key.

Since the priorities are only compared during updates, and the comparisons are coupled with rotations, the expected number of priorities looked at during a deletion is less than two and during an insertion it is less than four.

6.2 Locations As Priorities.

The nodes of the tree are stored in an array L[] in random order. The addresses of the nodes can serve as priorities, i.e., the node L[i] has priority i.

To insert an item x some i with 1≤ i ≤n+1 is chosen uniformly at random. If i=n+1, then x is stored in location L[n+1], and it is inserted in the treap. If i≤n, the node stored at L[i] is moved to L[n+1], which means it has to be rotated down into leaf position in the tree, then the new item is placed into location L[i] and it is inserted in the treap with priority i.

The remove of item x=L[i] from the tree is trivial. After it is removed, the node stored at L[n] is moved into L[i], which means its priority is changed from n to i and it has to be rotated up the tree accordingly.

This scheme has some drawbacks. To change the location of a node, it is either necessary to maintain explicit parent pointers, which is costly in space or it is necessary to find it via a search, which is costly in time. Explicit parent pointers are necessary for a family of trees is maintained by joins and splits. The nodes of all those trees can be kept in one array. However, when remove a node during an update, its parent cannot be found via search as you do not know which tree it belongs to.

It is no problem to decide the size of the array L[], if the maximum size of the tree is known in advance. If not this case, the size can be adjusted dynamically (double or shrink), but the copying cost incurred through the size changes is amortized.

6.3 Computing Priorities from Subtree Sizes.

This scheme assumes that for every node x in the tree the size S(x) of its subtree is known. During the deletion of a node y, to decide whether to rotate left or right for every down rotation is dictated by the priorities of the two children x and z of y. The priorities of x and z is the largest of the S(x) and S(z) priorities stored in their subtrees respectively. Thus, the probability that x is rotated up is S(x)/(S(x)+S(z)).

Unfortunately this scheme does not work for insertions.

7. RANDOMIZED SEARCH TREES AND SKIP LISTS

Skip lists are a probabilistic search structure that were proposed and popularized by Pugh. These data structures are linked lists with extra pointers that skip over intermediate nodes. They can be viewed as a hierarchy of coarser lists constructed over an initial linked list, with a coarser list in the hierarchy guiding the search in the next finer list in the hierarchy. Which list items are used in the coarser lists is determined via random choice.

Skip lists hold the bounds listed in Theorem 3.1. There is also a weighted version of skip lists by appropriately biasing the random choice that determines how far up the hierarchy a list item is to go. The expected performance of the weighted skip lists also match Theorem 3.2.

Both of Randomized Search Tree and Skip Lists are conceptually reasonably simple and easy to implement, and achieve almost identical performance characteristics. Differences such as randomized search trees can be implemented using only exactly n pointers, whereas this appears to be impossible for skip lists, are not of particularly great practical significance.

REFERENCES

[1] R. Seidel, C. R. Aragon. “Randomized Search Trees”.

 http://citeseer.nj.nec.com/cachedpage/364925/1
[2] William Pugh. “Skip Lists: A Probabilistic Alternative to Balanced Trees”. Communications of the ACM, Vol. 33(6), pp. 668-676, 1990.

D(x), the depth of node x in a tree.

S(x), the size of the subtree rooted at node x.

P(x,y), the length of the unique path between nodes x and y in the trees.

SL(x) and SR(x), the length of the right spine of the left subtree of x and the length of the left spine of the right subtree of x.

Ai,j is 1 if xi is an ancestor of xj in T and 0 otherwise.

Ci:l,m is 1 if xi is a common ancestor of xl and xm in T and 0 otherwise.

4 of 7 pages

