
Ma et al, from Gene Trees to Species Trees

AJ Milne

November 22, 2001

Figure 1: A species tree

0.1 introduction

The paper is Ma et al, From Gene Trees to Species Trees, SIAM Journal on
Computing, Vol 30, No, pp. 729-252. [3].

The problem, briefly stated, is the reconciliation of gene trees and species
trees.

I’ll be concentrating on the NP-hard proofs in the paper, as there is a
great deal of other material. Another aspect of this paper readers might find
interesting is the development and testing of a heuristic method for finding
reconciled species trees, which Ma et al claim has outperformed the current
method in Page’s GeneTree.

0.2 Problem explanation – descendance of genes
and of species

A species tree is a representation of similarity of a number of species. See
Figure 1.

A gene tree is a similar construction, and represents the relative simi-
larity within a group of homologolous genes. An example appears in Figure
2.

Gene trees are derived as follows: given a set of sequences like this, it can
be determined which is more similar to which others, though not trivially,
relatively simply, with several well-known algorithms. These algorithms
essentially just try to find what’s the minimum number of changes you have
to make to get from one gene to another. The algorithms are looking for

1

Figure 2: A gene tree

the tree that represents a branching tree of genes representing these shortest
paths, so we call the resulting tree the most parsimonious one. So these are
parsimonious gene tree deriving algorithms.

Typically, when genes are sequenced, and the phylogenetic relation-
ship between the host species is known, a pattern like that in the given
hemoglobin gene tree appears, in which the phylogeny of the species in-
volved is traced by the similarity of the genes (with, in this example, a
duplicate set adding only slightly to the complexity).

Why this is isn’t difficult to grasp. Genes within two relatively simi-
lar species are more similar to one another than they are to a third gene
of the same family within a more distantly related species most probably
because those species descended from one another in the order their sim-
ilarities suggest. The two more similar species are more similar precisely
because they’ve had a more recent common ancestor, and thus less time
and fewer opportunities for their homologolous seqences to diverge from one
another, so there are fewer divergences.

However, this is not always the case. Not uncommon sequences of gene
duplication and loss events can transpire to confuse this picture. A schematic
example is shown in figure 3.

In this example, the actual phylogenetic relationship between a horse,
a chimp, and a human is confused, due to the effective ’reemergence’ at
the species level of two gene duplication events – the splitting of the β line
from α, and the subsequent splitting of γ from β. The resulting sequence
data would suggest that chimps and horses shared a more recent common
ancestor than do humans and either of these groups.

Were this the only data we had contributing to our knowledge of the

2

Figure 3: A gene tree obscured by duplication and gene loss events

phylogeny of these three species, we would wind up with a rather confusing
picture.

However, species contain many genes, and many detectable homologolous
sequences within. The result is, typically, when attempting to deduce species
phylogeny from sequences, researchers have several different data sources to
consider.

So this is the gene to species tree problem, in informal terms: given n
gene trees Gi, find a species tree S which minimalizes the number of gene
duplication and loss events (the overall mutation cost) we must introduce
to reconcile the trees. It is generally assumed this tree will probably most
closely represent the phylogenies of the species involved.

Ma et al state this in more formal terms in their paper, and define
a number of metrics for assessing the cost of duplication and loss events
associated with reconciling gene and species trees. The duplication cost will
be discussed in more detail in the discussion of the proof.

0.3 Solutions to now

There have been several papers on the problem in the past five years. Page
and Charleston, from the University of Glasgow, published a work in 1997
that serves as an excellent introduction to the problem and to one family of
heuristic solutions. [4].

Page also wrote GeneTree, a freeware package that’s something of a

3

standard in the field now, which used the approaches this paper describes.
The framing of the problem in the 1997 paper, and in GeneTree is that

you can attach a cost to each event you interpolate into a gene tree to
reconcile it with a common species tree, and the trick is to find a solution
that minimizes total cost, summed over all the genes you’re using.

The methods described in the 1997 paper worked with a toolbox of
heuristic searches, that used a kind of hill-climbing strategy, starting from
various trees and attempting to wiggle them in various ways to climb ad-
jacent hills – or to minimize the gene tree interpolation cost. It was also
understood that, if the ’fitness landscape’ for solutions (where peaks of fit-
ness represent local minima in terms of interpolation costs) were generally
rugged, such strategies would get stuck on local peaks, when higher but re-
mote global peaks, separated from the starting point by a valley, would be
missed.

The 1997 paper critiques a 1996 study by Guigo et al as evidence for
this possibility – the 1996 study, the Page paper claims, got stuck on some
local maxima, and they were later able to find better ones.

As of 1997, various approaches working from different starting points
were used. Two basic methods for wiggling the trees were used – NNI
(nearest neighbour interchange), and cut and paste, or subtree pruning and
cutting. And that’s about where we were when the Ma paper came out this
year.

As of the writing of Ma et al, no polynomial time algorithm was known
to solve this problem. While I have found no formal statements that anyone
believed at this point the problem was NP-complete, it seems likely it was
suspected.

0.4 Ma et al, and the NP-proofs

As stated in the introduction, Ma et al provide a proof that the gene to
species tree reconciliation problem is NP-hard. They actually provide proofs
for several cases of the problem, and call them

Optimal Species Tree I (OST I) – in which there are n gene trees to be
considered, and we consider only minimizing the duplication cost (the cost
of interpolating gene duplication events), and

Optimal Species Tree II (OST II) – in which there are n gene trees to
be considered, and we consider what they call the ’mutation cost’, which is
summed from the gene duplications and the gene losses, and

Optimal Species Tree III (OST III) – in which there is just one gene tree,

4

and they attempt to minimize just the duplication cost in formulating the
species tree.

All of these problems are converted to decision problems, to which known
NP-hard decision problems are reduced, to prove their NP-completeness.

I shall work through the proof for OST I in detail, and just describe the
other two proofs briefly, as the proofs (particularly for OST I and II) are
quite lengthy.

0.4.1 OST I NP-hard

The Ma et al proof that OST I is NP-hard is also the foundation from which
they prove that OST is NP-hard.

The proof relies on a somewhat elaborate construction of a species tree
for each node, and a species tree for each edge, for a graph instance on which
INDEPENDENT-SET would be run.

Line tree and label construction

Ma et al start by constructing a large set of labels, and a set of n + 1 line
trees carrying these labels.

They start from an instance G = (V,E) where V = {v1, v2, . . . vn}. They
then let N = 5n3.

For each vi, they then introduce N labels lip, 1 ≤ p ≤ N , and line tree
Ti = L[li1, li2, . . . , liN].

They then Introduce an extra N labels l0p, 1 ≤ p ≤ N , and line tree
Ti = L[l01, l02, . . . , l0N].

This gives them, lease note, (n+ 1)N labels, and n+ 1 line trees.

Vertex tree constructions (gene trees)

Next, they construct n gene trees, one for each vertex in the graph. They
construct them as shown in the attached figure.

Note that each of these is highly similar, on its left, to that of each of
its neighbours.

Edge tree constructions

Next, they construct 2|E| vertex trees, two for each vertex. These are con-
structed as show in figure [error].

Note that the trees for Gij and Gji are identical on the left, and different
on the right.

5

Figure 4: The vertex species tree construction

Figure 5: The edge species tree construction

They state without proof at this point that you can do this transforma-
tion in polynomial time. I won’t belabor the point. It sure looks like you
can. I’ve done it with pen and paper for small graphs, representing each of
the line trees with ellipses and triangles as do they, and it’s not difficult.

Lemma 4.2 from Ma et al

They then state the following Lemma: The graph G contains an independent
set of size d if and only if there is a species tree S for all the gene trees Gij
and Gi constructed above with the duplication cost c < (|E|+N −d+ 1

2)N .

6

Figure 6: The species tree, for a five node graph

0.4.2 Species tree construction

To prove this lemma, they construct a species tree as follows:

S = L[ln1, . . . , lnN , . . . , l(d+1)1, . . . , l(d+1)N ,(1)
l01, . . . , l0N , ld1, . . . , ldN , . . . , l11, . . . , l1N]

The following figure shows what this would look like for a five node
graph.

Now Ma et al propose, let’s assume G contains an independent set K of
size d. They assume V (K) = {v1, v2, . . . , vd}.

They then assert, quite without explaining it, that for all i ≤ d,

tdup(Gi, S) = n− 1(2)

while for all i > d,

tdup(Gi, S) = N + n− 1(3)

It’s easy enough to see why this would be. For all i ≤ d, there are
no T-trees that contradict the strict order imposed by the construction in

7

which the T0 tree is in the ancestral chain above all the T-trees from 1 to
d. However, in all the trees i > d, this is the case, and you must propose N
additional substitutions to corerect for it.

Next, they assess the costs of reconciling the edge graphs. It’s clear that
for all these graphs, if there’s an independent set of size d, and all of v1 to
vd are in it, for every pair Gij and Gji of these graphs, the duplication costs
works out higher than N (one of the two will require such a transform), but
less than N + 2n.

Then, they just add up the all the duplication costs, and get their result,
thus proving the if half of the lemma.

Proof of Lemma 4.2 (only if)

The only if half of the Lemma 4.2 if and only if condition is proved through
negation.

I won’t work through this proof in great detail here, as it’s largely parallel
to the previous one, and uses a demonstration that if the set does not contain
an independent set of size d, the positioning of the subtrees requires that c
must be (|E|+ n− d+ 1)N , which contradicts the Lemma.

0.5 Remaining NP-hard proofs

Ma et al prove OST II NP-hard through a reduction from the cyclic ordering
problem, a problem proved NP-complete in 1977. [2]. The proof

OST III is proved through a reduction from OST I, the proof of which
is demonstrated above.

0.6 The heuristic method

Ma et al’s proposed heuristic method has to do with a new metric they have
devised for assessing the cost of reconciliation – the symmetric duplication
cost, which can be calculated rapidly between gene trees. They report sig-
nificantly improved search times with their approach, which, in contrast to
earlier approach, does not start from a random gene tree (as the starting
point for the gene tree) in the input set, but a gene tree selected for having
the minimum symmetric duplication cost (done between this tree and each
other tree in the input set, then summed).

8

0.7 Supplemental – NP-completeness of INDEPENDENT-
SET through CLIQUE

I thought it appropriate, since the proof of NP-completeness of OST I re-
lies on that of INDEPENDENT SET, to provide a brief proof of the NP-
completeness of INDEPENDENT SET.

0.7.1 NP completeness of CLIQUE from 3-CNF-SAT

This is adapted from Cormen et al, 1004-5 [1].
The CLIQUE problem is: given an undirected graph G = (V,E), a clique

is a subset V ′ ∈ V of vertices, each pair of which is connected by an edge in
E. In other words, a clique is a complete subgraph of G.

The decision version of the CLIQUE problem is, given G and constant
k, does G contain a clique of size k?

The proof for the NP-completeness of CLIQUE itself is given in Cormen
et al, 1004, and is as follows:

(a) CLIQUE ∈ NP because given the graph G = (V,E), using set
V ′ ⊆ V as the certificate, we can check in polynomial time for each pair
u, v ∈ V ′, whether the edge (u, v) belongs to E.

(b) So if we can prove 3 − CNF − SAT ≤ CLIQUE, CLIQUE is NP-
hard. Cormen et al demonstrate the following reduction:

Let f = C1 ∧ C2 ∧ C3 ∧ . . . ∧ Ck be a boolean formula in 3-DNF with k
clauses. For r = 1, 2]ldotsk each clause Cr has exactly three distinct literals
lr1, lr2, andlr3.

Construct a graph G such that G has a clique of size k if and only if f is
satisfiable.

We do this as follows - (a) for each clause Cr = (lr1lr2lr3) in f we place
a tripple of vertices vr1, vr2, vr3 into V. (b)We put an edge between two
vertices vir and vjs if both of the following hold: vir and vsj are in different
triples, that is, r 6= s, and their corresponding literals are consistent, that
is, lir is not a negation of lsj .

Proof that this transformation is a reduction is: if f has a satisfying as-
signment, then each clause Cr contains at least on literal lir that is assigned
1, and each such literal corresponds to a vertex vir. Picking one such lit-
eral from each clause yields a set V’ of k vertices. We claim that V’ is a
clique. For any two vertices vir, sej ∈ V ′, where r 6= s, both corresponding
literals are mapped to 1 by the given satisfying assignment, so they can’t be
complements. thus by the construction of G, the edge vir, vsj is in E.

9

If G has a clique V’ of size k, no edges in G connect vertices in the same
triple, and so V’ contains exactly one vertex per triple. We can assign 1 to
each literal lir such that vir ∈ V ′ without fear of assigning 1 to both a literal
and its complement, since G contains no edges between inconsistent literals.
Each clause is satisifed, so f is satisfied.

0.7.2 NP completeness of independent set through CLIQUE

Independent set ∈ NP because given the graph G = (V,E), using set V ′ ⊆ V
as the certificate, we can check in polynomial time for each pair u, v ∈ V ′,
whether the edge (u, v) belongs to E.

Given graph G = (V,E), create its complement H(V,E′), following the
following rule: for each vertex pair (u, v) in G, if edge (u, v) is in E, edge
(u, v) is not in E′, and for each edge (u, v) not in E, edge (u, v) is in E’ If
and only if G has a clique of size k, H has an independent set of size k, since
the same k vertices in the cliquie in G that had a connection now have no
connection, by the definition of H.

10

Bibliography

[1] Cormen, Thomas et al, Introduction to Algorithms. 2nd ed. MIT Press,
2001.

[2] Galil, Z. and N Megido. Cyclic Ordering is NP-complete. Theor. Comp.
Sci., 5:179-182, 1977.

[3] Ma, Bin, et al. From Gene Trees to Species Trees. SIAM J. Comput.,
Vol 30, No 3, pp 729-752.

[4] Page, Roderic, and Michael A. Charleston. Reconciled trees and incon-
gruent gene and species trees. DIMACS Seris in Discrete Mathematics
and Theoretical Computer Science, 1997.

0.8 Web Resources

See also http://taxonomy.zoology.gla.ac.uk/rod/genetree/genetree.html
re GeneTree.

11

