
EXAM

ADS - RKMVERI - June 2021

1 Instructions

1. The final exam due date will be announced by Swati Prabhu MJ.

2. Please write clearly.

3. Cite all the resources that you have used.

4. Please DO NOT collaborate with anybody. Treat this as a take-home exam.

5. If a question/problem isn’t clear, please make assumptions, state them and solve the
problem accordingly.

6. Solve as many problems as you can.

7. Most of the exercises are from my Notes on Algorithm Design https://people.scs.

carleton.ca/~maheshwa/Notes/DAA/notes.pdf. Also Corollary, Observations, and
Lemma numbers are with reference to my notes.

2 Problems

1. Consider the following bipartite graph G = (V = L ∪ R,E) where L = {l1, . . . , ln},
R = {r1, . . . , rn}, and E = {(li, ri)|1 ≤ i ≤ n}∪{(li, rj)|n2 + 1 ≤ i ≤ n and 1 ≤ j ≤ n

2
}.

Assume that the vertices in L are known in advance and the vertices in R come in
increasing order of their indices. The online algorithm (called GREEDY RANDOM)
matches the next vertex rj ∈ R to any of its unmatched neighbors in L (if there is
any) uniformly at random. Show that the expected size of the matching computed by
GREEDY RANDOM is n

2
+ log n. (Hint: For 1 ≤ j ≤ n

2
, show that with probability at

most 1
n
2
−j+1

the vertex rj will be matched to lj.)

2. Suppose there are only two possible actions {↑, ↓} of Dow Jones Index (DJI) at the
end of each day. Answer the following questions for the different scenarios.
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(a) Each morning the algorithm chooses the actions based on some smart scheme. If
the algorithm chooses ↑ with probability ≥ 1

2
, the adversary assigns the reward of

−1 for choosing the action ↑ and a reward of +1 for choosing ↓. If the algorithm
chooses ↓ with probability ≥ 1

2
, the adversary assigns a reward of +1 to the action

↑ and a reward of −1 to ↓. Over a run of T days, show that the expected reward
of the algorithm is at most 0. How does this compares with the reward of the
adversary if it somehow choose an optimal action for each day? (Remark: This
exercise shows that the algorithm (even a randomized scheme) has no match for
the adversary that chooses an optimal action on each day.)

(b) Each morning the algorithm chooses one of the two actions by following some
deterministic strategy. If the choice of our action for that day matches DJI we
get a reward of +1, otherwise we get a reward of 0. Show that in a run of T days,
an adversary can design the outcomes for each day in such a way that the reward
that our algorithm gets is 0, whereas there is a fixed action if chosen for all the
days will generate a revenue of at least T

2
. If there are n actions, show that the

algorithms revenue can be zero, whereas there is a fixed action that can generate
a revenue of at least T (1 − 1

n
). Conclude that no deterministic algorithm can

ensure a positive reward. (Note that the problem is that we don’t know which
action will generate that kind of revenue till we have observed the behaviour of
all the actions for T days.)

3. The Section number refers to my notes. In Subsection 11.5.4, mt
i’s were the losses of

experts on day t. They can take any values in the interval [−1, 1]. Instead of thinking
of mt

i’s as the loss of expert i on day t, assume that it is the gain of the expert. In that
section we wanted to establish that our online strategy doesn’t incur significantly more
loss than the best expert. Show what changes you need to make in the multiplicative
weight update method if mt

i’s are gains. Show that the expected gain of the algorithm

is
T∑
t=1

M t ≥
T∑
t=1

mt
i − lnn

η
− η

T∑
t=1

|mt
i|, where

T∑
t=1

mt
i is the gain of the best expert.

(Hint: Can we think of the loss vector as −mt and use the same algorithm as in
Subsection 11.5.4?)

4. Assume that we have a stream consisting of numbers from the set {−1, 0,+1} and we
are interested in maintaining the sum of last N bits of the stream. In this exercise we
will show that it will require Ω(N) bits to maintain an approximate sum that is within
a constant factor of the exact sum. Suppose we have an algorithm A that maintains
the approximate sum. Assume that we have a bit string consisting of N

2
-bits composed

of 0s and 1s. We replace each 0-bit by a pair of bits (1,−1) and each 1-bit by the pair
(−1, 1). Now this sequence of N -bits is presented to our algorithm A that maintains
the approximate sum within a constant factor. Note that the exact sum of these N -bits
is 0. In addition to these N bits, the next set of N bits that will be received in the
stream are only 0-bits. Answer the following:
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(a) Show that if the next bit (i.e. the (N + 1)-st bit) in the stream is 0, the output
to the sum query on receiving this bit will be +1 (respectively −1) if and only if
the 1st bit in the stream was a 1 (respectively, −1).

(b) For a positive integer i < N
2

, show that after receiving the (N + 2i− 1)-th 0 bit,
the output to the sum query will be +1 (respectively −1) if and only if the i-th
bit in the stream was a 1 (respectively, −1).

(c) Show that after receiving the 2N -th 0 bit, we would have completely recovered
the first N -bits of the stream.

(d) Conclude that to estimate the approximate sum within a constant factor in a
sliding window of size N in a stream of (positive and negative) numbers we need
to store Θ(n) bits.

5. This problem is about the power of medians of means. Assume that we want to
compute a value X using a randomized algorithm. In the analysis of our algorithm we
use a random variable X that estimates X , i.e. E[X] = X . To have a good estimation,
we take k × s independent random variables that have identical distribution as that
of X, where s = O(log 1

ε
) and k = cV ar[X]

γ2E[X]2
for some positive constants c, γ, and ε. We

denote them by {X11, . . . , X1k, X21, . . . , X2k, . . . , Xs1, . . . , Xsk}. Define Yi = 1
k

k∑
j=1

Xij,

1 ≤ i ≤ s, and Z as the median value of {Y1, . . . , Ys}. Show the following.

(a) For i ∈ {1, . . . , s}, E[Yi] = X .

(b) E[Z] = X .

(c) V ar[Yi] = 1
k
V ar[X].

(d) Using Chebyshev’s inequality show that Pr(|Yi −X| ≥ γX ) ≤ 1
c
.

(e) Using the ideas from Observation 10.3.7 (see my notes) and the Chernoff bounds,
show that Pr(|Z −X| ≥ γX ) ≤ ε.

6. Let S = {x1, . . . , xn} be a set of n distinct numbers. We are interested in finding an
approximate median element of S. Define the rank of an element y ∈ S as the number
of elements in S that are ≤ y, i.e. rank(y) = |{x ∈ S|x ≤ y}|. An element y ∈ S is an
approximate median of S, if n

2
− εn ≤ rank(y) ≤ n

2
+ εn for some ε ≤ 1

6
. We employ

the following strategy to find an approximate median element. We sample s elements
from S, each independently and uniformly at random with replacement. Let S ′ ⊂ S
be the set of sampled elements. We set y to be the median of the sampled elements.
Define the three subsets of S as follows.

L = {x ∈ S : rank(x) <
n

2
− εn}

U = {x ∈ S : rank(x) >
n

2
+ εn}

M = {x ∈ S :
n

2
− εn ≤ rank(x) ≤ n

2
+ εn}
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Answer the following.

(a) Show that the probability that a sampled element is from the set L is 1
2
− ε.

(b) Let X = |L ∩ S ′|. Show that E[X] = (1
2
− ε)s.

(c) Show that if |L ∩ S ′| > s
2
, then y is not an approximate median. Same holds if

|R ∩ S ′| > s
2
.

(d) Show that Pr(X > s
2
) ≤ Pr(X ≥ (1 + ε)E[X]).

(e) Using Chernoff bounds and by setting s = 9
ε2

log 2
δ

show that Pr(X ≥ (1 +

ε)E[X]) ≤ exp(− ε2

3
E[X]) ≤ δ

2
.

(f) Show that if |L ∩ S ′| ≤ s
2

and |R ∩ S ′| ≤ s
2
, then y is an approximate median.

(g) Show that if we draw s = 9
ε2

log 2
δ

samples, Pr(n
2
−εn ≤ rank(y) ≤ n

2
+εn)) ≥ 1−δ.

(h) How many samples we need to draw if ε = 0.1 and we want to succeed with
probability at least 3/4?

7. For the locality-sensitive hashing technique with respect to signatures of sets, we par-
titioned the signature matrix in b bands, each band consisting of r rows, and analyzed
that the probability that the two sets with Jaccard similarity of s, will be reported
similar with probability f(s) = 1−(1−sr)b, using the so called AND-OR construction.
This analysis was based on estimating the probability that signatures for the two sets
should match in all rows (constituting the AND-family) of at least one of the bands
(the OR-family). Suppose, we alter our strategy, and use OR-AND construction. To
be more precise, we have the same partitioning in terms of b bands and r rows, but
now we say that the signatures match in a band, if they match in at least one of the
rows in that band, but we declare the two sets to be similar if their signatures match
in all the bands. Estimate what will be the probability that the two sets are reported
similar whose Jaccard similarity is s using the OR-AND strategy. Call this estimate
f ′(s). Furthermore, compare the two estimates, f(s) and f ′(s), for various values of s,
(you may fix b = 20 and r = 5 or to any other values).

8. Assume we have a set P = {p1, . . . , pn} of n distinct points in plane, where pi =
(x(pi), x(yi)) and x(pi) and y(pi) refers to x and y coordinates of pi, respectively. For
any point z in plane, define the function ∆(z, P ) as

∆(z, P ) =
n∑
i=1

||pi − z||22 (1)

Note that ||pi − z||22 refers to the square of the Euclidean distance between pi and z.
Answer the following

(a) Let the point z∗ = (

n∑
i=1

x(pi)

n
,

n∑
i=1

y(pi)

n
). Show that for any arbitrary point z in plane,

∆(z, P ) = ∆(z∗, P ) + n||z − z∗||22
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(b) Show that among all points in the plane, the point z∗ minimizes Equation 1

(c) Choose a point uniformly at random from P . Let the chosen point be p ∈ P .
Show that E[∆(p, P )] ≤ 2∆(z∗, P )

9. Show that any metric space 〈X, d〉 on n-points, can be embedded inO(log2 n)-dimensional
space with a distortion factor of O(log2 n), where the distances are measured with re-
spect to L1-metric (i.e. the Manhattan metric). See Corollary 12.4.10. You need to
provide missing details in the proof.

10. How can you approximate Euclidean Minimum Spanning Tree for a set of n points P
in Rd using the ideas from the Locality-Sensitive ordering paper/lecture? EMST is the
minimum spanning tree of the complete graph on P . Weight of each edge e = (uv) is
the Euclidean distance between the points u and v of P . What is the approximation
factor? What is approximately the running time?

11. Consider the utility matrix M =


4 0 0
5 1 0
0 1 4
0 0 5


It represents 4 users as rows, 3 items as columns, and each entry is the item’s ranking
by a user. Answer the following questions:

(a) Provide a best rank 2 approximation of M using the Singular-Value Decomposi-
tion. (You may use some package to compute SVD). Let M ′ represents the rank-2
approximation of M .

(b) Compute the Loss in Energy when we approximate M by M ′

(c) Use M ′ to map all the users to the concept space

(d) For the following users q1 = [3, 0, 0], q2 = [0, 3, 0], and q3 = [0, 0, 3], what are
the items you will recommend? Provide some justification for your choice. (Note
q1 = [3, 0, 0] refers to that the user q1 gives the rank of 3 to Item 1, but has not
given any rankings to Items 2 and 3.)
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